Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (6): 472-480    DOI: 10.11901/1005.3093.2022.107
ARTICLES Current Issue | Archive | Adv Search |
Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites
SHAO Mengmeng, CHEN Zhaoke(), XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui
Key Laboratory of Lightweight, High Strength Structural Materials, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Cite this article: 

SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites. Chinese Journal of Materials Research, 2023, 37(6): 472-480.

Download:  HTML  PDF(9613KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

C/C-ZrC-SiC composites have high specific strength, high specific modulus and good resistance to high-temperature ablation. At the same time, ZrC, SiC and carbon matrix materials have low neutron absorption cross-sections, which are candidate materials for future nuclear energy systems. In order to assess the application possibility of C/C-ZrC-SiC composites in the field of nuclear energy, C/C-ZrC-SiC composites was irradiated with ion beam of 2 MeV Si2+ at room temperature. Then the effect of Si2+ ion beam irradiation on the performance of C/C-ZrC-SiC composites was examined by means of grazing incidence X-ray diffraction, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy and nanoindentation test, in terms of their crystallographic structure, lattice damage, microstructure, surface morphology and micromechanical properties etc. The results show that the irradiation of Si2+ion beam can induce stress within the SiC lattice, which then leads to an increase in the interplanar spacing of SiC, while the ZrC lattice does not expand; After irradiation, Raman peaks of SiC are broadened and shifted, correspondingly new peaks emerged in the Si-C region; The ion irradiation can induce carbon vacancies within ZrC, resulting in the formation of characteristic peaks; The surface morphology of ZrC, SiC and carbon fiber don't change significantly after irradiation, but the atomic ratio of carbon atom in ZrC and SiC increase by 13.03% and 23.21%, respectively; A large number of interstitial defect clusters appeared in ZrC, while SiC was partially amorphized, and a completely amorphized region appeared at the junction of ZrC and SiC grains; The ID/IG value and the interplanar spacing of graphite crystallites increase, and the layered structure of pyrolytic carbon is destroyed and gradually disordered; the nano-hardness and elastic modulus of ZrC, SiC and carbon fibers increase, with the best stability with the smallest degree of increase in nano-hardness and elastic modulus.

Key words:  composites      C/C-ZrC-SiC      ion irradiation      lattice imperfection      amorphization      micro mechanical property     
Received:  22 February 2022     
ZTFLH:  TB332  
Fund: Fund of Key Laboratory of Final Assembly(6142907200301);Project of Military Equipment Development Equipment Project Center(6142912180202)
Corresponding Authors:  CHEN Zhaoke, Tel: 15387318568, E-mail:chenzhaoke2008@csu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.107     OR     https://www.cjmr.org/EN/Y2023/V37/I6/472

Calculation typeKinchin-Pease
Ion speciesSilicon
Ion energy2 MeV
Target density6.73, 3.17 and 2.26 g/cm3 for ZrC, SiC and C respectively
Target compositionZrC, SiC, C
Displacement energy (Ed)C 25 eV; Zr 35 eV for ZrC; C 20 eV; Si 35 eV for SiC[30]; C 25eV for carbon fiber
Table 1  Input parameters for SRIM simulation
Fig.1  Depth profiles of dpa and ion concentration in ZrC (a), SiC (b) and C (c) after irradiated by 2 MeV Si2+ ion
Fig.2  Comparison of GIXRD patterns of C/C-ZrC-SiC composites before and after irradiation
Fig.3  Raman spectra of ceramic matrix (a) and carbon fiber (b) in C/C-ZrC-SiC composites before and after irradiation
Fig.4  SEM images of carbon fiber (a,d), PyC interface (b, e) and ceramic matrix (c, f) before and after irradiation
Atom fraction% (ZrC)Atom fraction% (SiC)
ZrSiCSiC
Before irradiation44.612.2753.1270.5029.50
After irradiation34.135.8360.0459.3140.69
Table 2  Atom ration of ZrC and SiC phases before and after irradiation
Fig.5  BF (a), HRTEM (b) and IFET images (c) of ZrC and HRTEM (d,e) and IFET images (f) of SiC HRTEM image of carbon fiber (g) and PyC (h); FET image of carbon fiber and PyC (i) after irradiation
Fig.6  Nanoindentation load-displacement curves of ZrC (a), SiC (b) and carbon fiber (c) before and after irradiation
Nanohardness / GPaElastic modulus / GPa
Before irradiationAfter irradiationBefore irradiationAfter irradiation
ZrC16.78227.864141.220205.405
SiC14.54532.03693.462250.105
Fiber2.8445.52415.53634.878
Table 3  Nanohardness and Elastic modulus of ZrC, SiC and carbon fiber before and after irradiation
1 Chang Y, Sun W, Xiong X, et al. Microstructure and ablation behaviors of a novel gradient C/C-ZrC-SiC composite fabricated by an improved reactive melt infiltration [J]. Ceramics International, 2016, 42(15): 16906
doi: 10.1016/j.ceramint.2016.07.190
2 Shi A, Yang X, Fang C, et al. Effect of CNTs addition on microstructure, ablation property and mechanism of ZrC-SiC coating for C/C-ZrC-SiC composites [J]. Vacuum, 2020, 172:
3 Huo C, Zhou L, Guo L, et al. Effect of the Al2O3 additive on the high temperature ablation behavior of the ZrC-ZrO2 coating for SiC-coated carbon/carbon composites [J]. Ceramics International, 2019, 45(17): 23180
doi: 10.1016/j.ceramint.2019.08.014
4 Tang P, Hu C, Pang S, et al. Interfacial modification and cyclic ablation behaviors of a SiC/ZrB2-SiC/SiC triple-layer coating for C/SiC composites at above 2000℃ [J]. Corrosion Science, 2020, 169:
5 Yang X, Su Z, Huang Q, et al. Microstructure and mechanical properties of C/C-ZrC-SiC composites fabricated by reactive melt infiltration with Zr, Si mixed powders [J]. Journal of Materials Science & Technology, 2013, 29 (8): 702
6 Zhao Z, Li K, Li W, et al. Ablation behavior of C/C-ZrC-SiC composites prepared by reactive melt infiltration under oxyacetylene torch at two heat fluxes [J]. Ceramics International, 2018, 44 (14): 17345
doi: 10.1016/j.ceramint.2018.06.199
7 Chen S A, Zhang C, Zhang Y, et al. Mechanism of ablation of 3D C/ZrC-SiC composite under an oxyacetylene flame [J]. Corrosion Science, 2013, 68: 168
doi: 10.1016/j.corsci.2012.11.009
8 LI J, Huang H, Lei G, et al. Evolution of amorphization and nanohardness in SiC under Xe ion irradiation [J]. Journal of Nuclear Materials, 2014, 454 (1-3): 173
doi: 10.1016/j.jnucmat.2014.07.036
9 Han Z, Wang X, Wang J, et al. Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500℃ annealing [J]. Chinese Physics B, 2021, 30 (8): 086107
10 Idris M I, Konishi H, Imai M, et al. Neutron irradiation swelling of SiC and SiCf/SiC for advanced nuclear applications [J]. Energy Procedia, 2015, 71: 328
doi: 10.1016/j.egypro.2014.11.886
11 Leide A J, Todd R I, Armstrong D E J. Measurement of swelling-induced residual stress in ion implanted SiC, and its effect on micromechanical properties [J]. Acta Materialia, 2020, 196: 78
doi: 10.1016/j.actamat.2020.06.030
12 Zhang L, Jiang W, Pan C, et al. Raman study of amorphization in nanocrystalline 3C-SiC irradiated with C+ and He+ ions [J]. Journal of Raman Spectroscopy, 2019, 50(8): 1197
doi: 10.1002/jrs.v50.8
13 Lin Y R, Ho C Y, Chuang W T, et al. Swelling of ion-irradiated 3C-SiC characterized by synchrotron radiation based XRD and TEM [J]. Journal of Nuclear Materials, 2014, 455(1-3): 292
doi: 10.1016/j.jnucmat.2014.06.061
14 Pellegrino S, Trocellier P, Thomé L, et al. Raman investigation of ion irradiated TiC and ZrC [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 454: 61.
doi: 10.1016/j.nimb.2019.02.012
15 Florez R, Crespillo M L, He X, et al. The irradiation response of ZrC ceramics under 10 MeV Au3+ ion irradiation at 800℃ [J]. Journal of the European Ceramic Society, 2020, 40(5): 1791
doi: 10.1016/j.jeurceramsoc.2020.01.025
16 Wei B, Wang Y, Zhang H, et al. Microstructure evolution of nonstoichiometric ZrC0.6 with ordered carbon vacancies under ion irradiation [J]. Materials Letters, 2018, 228: 254
doi: 10.1016/j.matlet.2018.06.010
17 Feng S, Yang Y, Xia H, et al. Irradiation effects of fiber and matrix induced by He+ ion for high-performance C/C composites [J]. ACS Applied Nano Materials, 2019, 2(5): 2926
doi: 10.1021/acsanm.9b00362
18 Oku T, Kurumada A, Imamura Y, et al. Effects of ion irradiation on the hardness properties of graphites and C/C composites by indentation tests [J]. Journal of Nuclear Materials, 2008, 381(1-2): 92
doi: 10.1016/j.jnucmat.2008.07.026
19 Egeland G W, Valdez J A, Maloy S A, et al. Heavy-ion irradiation defect accumulation in ZrN characterized by TEM, GIXRD, nanoindentation, and helium desorption [J]. Journal of Nuclear Materials, 2013, 435(1-3): 77
doi: 10.1016/j.jnucmat.2012.12.025
20 Shi B, Liu X C, Zhu M X, et al. Effect of propane/silane ratio on the growth of 3C-SiC thin films on Si(100) substrates by APCVD [J]. Applied Surface Science, 2012, 259: 685
doi: 10.1016/j.apsusc.2012.07.097
21 Bao W, Liu J X, Wang X, et al. Structural evolution in ZrC-SiC composite irradiated by 4 MeV Au ions [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2018, 434: 23
doi: 10.1016/j.nimb.2018.08.006
22 Florez R, Crespillo M L, He X, et al. Early stage oxidation of ZrC under 10 MeV Au3+ ion-irradiation at 800℃ [J]. Corrosion Science, 2020, 169:
23 Zhang L, Zhang C, Huang Q, et al. Microstructure damage in silicon carbide fiber induced by 246.8 MeV Ar-ion irradiation [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2018, 435: 169
doi: 10.1016/j.nimb.2018.06.002
24 Wei B, Wang D, Wang Y, et al. Microstructure evolution in ZrCx with different stoichiometries irradiated by four MeV Au ions [J]. Materials (Basel), 2019, 12 (22): 3768
doi: 10.3390/ma12223768
25 Jiang L, Xiu P, Yan Y, et al. Effects of ion irradiation on chromium coatings of various thicknesses on a zirconium alloy [J]. Journal of Nuclear Materials, 2019, 526: 151740
doi: 10.1016/j.jnucmat.2019.151740
26 Jiang C, Zheng M J, Morgan D, et al. Amorphization driven by defect-induced mechanical instability [J]. Phys Rev Lett, 2013, 111 (15): 155501
doi: 10.1103/PhysRevLett.111.155501
27 Jiang W, Jiao L, Wang H, et al. Transition from irradiation-induced amorphization to crystallization in nanocrystalline silicon carbide [J]. Journal of the American Ceramic Society, 2011, 94 (12): 4127
doi: 10.1111/j.1551-2916.2011.04887.x
28 Wang F, Yan X, Wang T, et al. Irradiation damage in (Zr0.25Ta0.25-Nb0.25Ti0.25)C high-entropy carbide ceramics [J]. Acta Materialia, 2020, 195: 739
doi: 10.1016/j.actamat.2020.06.011
29 Burchell T D. Radiation effects in graphite and carbon-based materials [J]. MRS Bulletin, 1997: 29
30 Weber W J, Gao F, Devanathan R, et al. The efficiency of damage production in silicon carbide [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 218: 68
doi: 10.1016/j.nimb.2003.12.006
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[4] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[5] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] LIU Dan, LEI Yucheng, ZHANG Weiwei, LI Tianqing, YAO Yiqiang, DING Xiangbin. Effect of He Ion Irradiation on Microstructure and Properties of CLAM Steel Weld[J]. 材料研究学报, 2022, 36(8): 609-616.
[8] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[9] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[10] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[11] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[12] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[13] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[14] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[15] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
No Suggested Reading articles found!