Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (12): 911-917    DOI: 10.11901/1005.3093.2021.234
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites
SONG Yuehong1, DAI Weili1, XU Hui2, ZHAO Jingzhe3()
1.Shangluo University, College of Chemical Engineering and Modern Materials, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean & Efficient Conversion and New Materials, Shangluo 726000, China
2.Nanxian Inspection and Testing Center of Yiyang City in Hunan Province, Yiyang 413000, China
3.Hunan University, College of Chemistry and Chemical Engineering, Changsha 410082, China
Cite this article: 

SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites. Chinese Journal of Materials Research, 2021, 35(12): 911-917.

Download:  HTML  PDF(8315KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composites of g-C3N4/Bi12O17Cl2 were prepared by a simple liquid phase precipitation method with bismuth nitrate, sodium chloride, sodium hydroxide and graphitic carbon nitride as raw material. The composition and morphology of the prepared composites were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The effect of g-C3N4 on the photocatalytic activity of g-C3N4/Bi12O17Cl2 composites were evaluated with Rhodamine B as the simulated pollutant under visible light. The results show that the photocatalytic performance of 2 % g-C3N4/Bi12O17Cl2 composite is the best, after 90 min of light exposure the photocatalytic degradation rate of RhB reached 98.64%.

Key words:  inorganic nonmetallic materials      g-C3N4/Bi12O17Cl2 composites      photocatalysis      RhB      photocatalytic mechanism     
Received:  15 April 2021     
ZTFLH:  O614  
Fund: National Natural Science Foundation of China(21571057);Scientific Research Projects of Shangluo University(17SKY018);Key Laboratory Project of Shaanxi Provincial Department of Education(19JS026);Natural Science Basic Research Program of Shaanxi(2019JQ-156)
About author:  ZHAO Jingzhe, Tel: (0731)82548686, E-mail: zhaojz@hnu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.234     OR     https://www.cjmr.org/EN/Y2021/V35/I12/911

Fig.1  XRD patterns of the synthetic samples
Fig.2  FT-IR spectra of g-C3N4、Bi12O17Cl2 and g-C3N4/Bi12O17Cl2 composites
Fig.3  SEM images of the samples (a) g-C3N4; (b) 2% g-C3N4/Bi12O17Cl2; (c) 4% g-C3N4/Bi12O17Cl2; (d) 6% g-C3N4/Bi12O17Cl2; (e) 8% g-C3N4/Bi12O17Cl2; (f) Bi12O17Cl2
Fig.4  UV-vis diffuse reflectance spectras of g-C3N4、Bi12O17Cl2 and g-C3N4/Bi12O17Cl2 composites (a) and (ahv)1/2-hv curves (b)
SamplesEVB/eVECB/eVEg/eV
g-C3N43.7440.9342.81
Bi12O17Cl21.695-0.4652.16
Table 1  EVBECB and Eg values of g-C3N4 and Bi12O17Cl2
Fig.5  g-C3N4、Bi12O17Cl2 and g-C3N4/Bi12O17Cl2 composites (a) the photodegradation curves of RhB as a function of the irradiation time; (b) the ln(C0/C)-t curves for RhB degradation, (c) the corresponding reaction kinetics constant (k)
Fig 6  Effects of scavengers on the photodegradation of RhB over g-C3N4/Bi12O17Cl2 composite (a) and the photocatalytic mechanism (b)
1 Dong Z J, Pan J Q, Wang B B, et al. The p-n-type Bi5O7I-modified porous C3N4 nano-heterojunction for enhanced visible light photocatalysis [J]. J. Alloy. Compd., 2018, 747: 788
2 Li J K, Li W T, Liu X. Study on the synthesis of g-C3N4/BiVO4 composite photocatalyst and its photocatalytic performance [J]. Journal of Functional Materials, 2020, 51(6): 06067
李家科, 李文涛, 刘 欣. g-C3N4/BiVO4复合光催化剂制备及其光催化性能研究 [J]. 功能材料, 2020, 51(6): 06067
3 Yu Z X, Min X, Li F, et al. A mussel-inspired method to fabricate a novel reduced graphene oxide/Bi12O17Cl2 composites membrane for catalytic degradation and oil/water separation [J]. Polym. Adv. Technol., 2018, 8: 1
4 Yan X, Lu J H, Hui X Y, et al. Preparation and visible light photocatalytic property of g-C3N4/MoS2 nanosheets/GO ternary composite photocatalyst [J]. Journal of Inorganic Materials, 2018, 33(5): 515
阎 鑫, 卢锦花, 惠小艳等. g-C3N4/MoS2纳米片/氧化石墨烯三元复合催化剂的制备及可见光催化性能 [J]. 无机材料学报, 2018, 33(5): 515
5 Peng Z T, Gao Y Y, Yao C, et al. Preparation and photocatalytic activity of Fe/Yb Co-doped titanium dioxide hollow sphere [J]. Chinese Journal of Materials Research, 2021, 35(2): 135
彭子童, 郜艳荣, 姚楚等. 铁/镱掺杂二氧化钛空心球的制备及其光催化性能 [J]. 材料研究学报, 2021, 35(2): 135
6 Zhang Y, Han C, Zhang G, et al. PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine [J]. Chem. Eng. J., 2015, 268: 170
7 Zhao S, Zhang Y W, Zhou Y M, et al. Reactable polyelectrolyte-assisted synthesis of BiOCl with enhanced photocatalytic activity [J]. ACS Sustain. Chem. Eng., 2017, 5: 1416
8 Liu M Y, Zheng Y F, Song X C, et al. Biomass assisted synthesis of 3D hierarchical structure BiOX(X=Cl,Br)-(CMC) with enhanced photocatalytic activity [J]. J. Nanosci. Nanotechno., 2019, 19: 5287
9 Li J, Yu Y, Zhang L Z, Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis [J]. Nanoscale, 2014, 6: 8473
10 Liu X Y, Xing Y X, Liu Z L, et al. Enhanced photocatalytic activity of Bi12O17Cl2 preferentially oriented growth along [200] with various surfactants [J]. J. Mater. Sci. 2018, 53: 14217
11 Fang K X, Shi L, Yao L Z, et al. Synthesis of novel magnetically separable Fe3O4/Bi12O17Cl2 photocatalyst with boosted visible-light photocatalytic activity [J]. Mater. Res. Bull., 2020, 129: 110888
12 Shi L, Si W W, Wang F X, et al. Construction of 2D/2D layered g-C3N4/Bi12O17Cl2 hybrid material with matched energy band structure and its improved photocatalytic performance [J]. RSC Adv., 2018, 8: 24500
13 Ma J Y, Shi L, Wang Z M, et al. 2D layered MoS2 loaded on Bi12O17Cl2 nanosheets: An effective visible-light photocatalyst [J]. Ceram. Int., 2020, 46: 7438
14 Quan Y, Wang B, Liu G P, et al. Carbonized polymer dots modified ultrathin Bi12O17Cl2 nanosheets Z-scheme heterojunction for robust CO2 photoreduction [J]. Chem. Eng. Sci., 2021, 232: 116338
15 Dai X, Cui L S, Yao L Z, et al. Facile construction of novel Co3O4/Bi12O17Cl2 heterojunction composites with enhanced photocatalytic performance [J]. J. Solid State Chem., 2021, 297: 122066
16 Li X, Jin Y C, Dou Z X, et al. Rational design of Z-scheme Bi12O17Cl2/plasmonic Ag/anoxic TiO2 composites for efficient visible light photocatalysis [J]. Powder Technol., 2021, 384: 342
17 Xiong J, Li X, Huang J, et al. CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production [J]. Appl. Catal. B: Environ., 2020, 266: 118602
18 Zhong R, Zhang Z, Yi H, et al. Covalently bonded 2D/2D O-g-C3N4/TiO2 heterojunction for enhanced visible-light photocatalytic hydrogen evolution [J]. Appl. Catal. B: Environ., 2018, 237: 1130
19 Liu C, Zhu H, Zhu Y S, et al. Ordered layered N-doped KTiNbO5/g-C3N4 heterojunction with enhanced visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 228(15): 54
20 Huo Y, Yang Y, Dai K, et al. Construction of 2D/2D porous graphitic C3N4/SnS2 composite as a direct Z-scheme system for efficient visible photocatalytic activity [J]. Appl. Surf. Sci., 2019, 481: 1260
21 Wang X J, Wang Q, Li F T, et al. Novel BiOCl-C3N4 heterojunction photocatalysts: In situ preparation via an ionic-liquid-assisted solvent-thermal route and their visible-light photocatalytic activities [J]. Chem. Eng. J., 2013, 234: 361
22 Ma Y J, Bian Y, Tan P F, et al. Simple and facile ultrasound-assisted fabrication of Bi2O2CO3/g-C3N4 composites with excellent photoactivity [J]. J. Colloid Interface Sci., 2017, 497: 144
23 Li H P, Liu J Y, Hou W G, et al. Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity [J]. Appl. Catal., B, 2014, 160-161: 89
24 Ye L Q, Liu J Y, Jiang Z, et al. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity [J]. Appl. Catal., B, 2013, 142-143:1
25 Tian N, Zhang Y H, Liu C Y, et al. g-C3N4/Bi4O5I2 2D-2D heterojunctional nanosheets with enhanced visible-light photocatalytic [J]. RSC Adv., 2016, 6: 10895
26 Huo Y, Zhang J F, Wang Z L, et al. Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction [J]. J. Colloid Interface Sci., 2021, 585: 684
27 Shi L, Wang F, Zhang J, et al. Onion-like carbon modified porous graphitic carbon nitride with excellent photocatalytic activities under visible light [J]. Ceram. Int. 2016, 42: 18116
28 Kang Y, Yang Y, Yin L C, et al. An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation [J]. Adv. Mater., 2015, 27: 4572
29 Chen X Y, Huh H S, Lee S W, et al. Controlled synthesis of bismuth oxo nanoscale crystals (BiOCl, Bi12O17Cl2, α-Bi2O3, and (BiO)2CO3) by solution-phase methods [J]. J. Solid State Chem., 2007, 180(9): 2510
30 Liu C Y, Huang H W, Du X, et al. In situ Co-crystallization for fabrication of g-C3N4/Bi5O7I heterojunction for enhanced visible-light photocatalysis [J]. J. Phys. Chem. C, 2015, 119: 17156
31 Tian Y, Li W, Zhao C, et al. Fabrication of hollow mesoporous SiO2-BiOCl@PANI@Pd photocatalysts to improve the photocatalytic performance under visible light [J]. Appl. Catal. B: Environ., 2017, 213: 136
32 Makua P, Pacia M, Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra [J]. J. Phys. Chem. Lett., 2018, 9: 6814
33 Wang N, Shi L, Yao L Z, et al. Highly improved visible-light-inducedphotocatalytic performance over BiOI/Ag2CO3 heterojunctions [J]. RSC Adv., 2018, 8: 537
[1] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[2] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[3] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[4] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[5] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[6] LI Yuanyuan, ZENG Hanlu, PU Hongzheng, JIANG Mingzhu, WANG Zhongming, YANG Yimeng, GONG Xiangnan. Photocatalytic Degradation of Tetracycline by Si Doped Li2SnO3[J]. 材料研究学报, 2022, 36(3): 206-212.
[7] OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. 材料研究学报, 2022, 36(2): 152-160.
[8] JING Qian, CAO Han, LIU Fangyuan, XI Huijuan, LI Chaoxiang, SHAO Yunhang, CAO Meiwen, XIA Yongqing, WANG Shengjie. Preparation and Photocatalytic Property of Iron-doped Titanium Dioxide Nanomaterials[J]. 材料研究学报, 2022, 36(11): 862-870.
[9] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] FENG Kai, L Guangzhe, L Bin. Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders[J]. 材料研究学报, 2021, 35(8): 591-596.
[12] MU Zhaoyu, CAI Wenjie, CHEN Yue, PAN Jie, CHEN Yang. Preparation and Photocatalytic Activity of Meso-silica/ceria Binary Composites with a Core/shell Structure[J]. 材料研究学报, 2021, 35(5): 364-370.
[13] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[14] XUE Wenxing, XIE Liyan, WANG Wanjun, LIU Minghua, HUANG Jianhui. Preparation and Photocatalytic Properties of Composite Photocatalyst β-Bi2O3/BiOCOOH with Hierarchical Structure[J]. 材料研究学报, 2020, 34(4): 311-320.
[15] ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao. Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries[J]. 材料研究学报, 2020, 34(3): 191-197.
No Suggested Reading articles found!