Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (7): 481-492    DOI: 10.11901/1005.3093.2020.530
ARTICLES Current Issue | Archive | Adv Search |
Effect of C- and W-content on Microstructure and Toughness of Weld Metal for Low Alloy Cr-Mo Steel
ZHU Gaowen1,2, WU Dong1, LU Shanping1()
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

ZHU Gaowen, WU Dong, LU Shanping. Effect of C- and W-content on Microstructure and Toughness of Weld Metal for Low Alloy Cr-Mo Steel. Chinese Journal of Materials Research, 2021, 35(7): 481-492.

Download:  HTML  PDF(49178KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of C- and W-content on the microstructure and impact toughness of the weld metals for 2.25Cr1Mo steel weld via tungsten argon arc welding (TIG) technique was investigated by means of OM, SEM, EPMA, EBSD, thermal expansion- and impact-test. The results show that the microstructure of the multi-layer and multi-pass weld metal was heterogeneous, which can be divided into upper weld metal and intermediate weld metal. The upper weld metal can be divided into melting zone (MZ), coarse grain heat affected zone (CGHAZ), fine grain heat affected zone (FGHAZ), inter-critical heat affected zone (ICHAZ), inter-critically reheat coarse grain heat affected zone (ICCGHAZ) and sub-critical heat affected zone (SCHAZ). Intermediate weld metal composed of necklace-type microstructure which distribute along the prior austenite grain boundary and equiaxed crystal structure. The equiaxed crystal structure was tempered bainite with good toughness. Necklace-type microstructure composed of a large number of M-A constituents, which could easily cause stress concentration and promote crack initiation, whereas, deteriorate the toughness of weld metal. Increasing C content could promote the formation of lath bainite in upper weld metal and necklace-type microstructure in intermediate weld metal, which deteriorated the toughness of weld metal; However, increasing W content could promote the formation of lath bainite in upper weld metal and inhibit the formation of necklace-type microstructure in intermediate weld metal, which is beneficial to improving the toughness of weld metal.

Key words:  metallic materials      Cr-Mo weld metal      element content      necklace-type microstructure      impact toughness     
Received:  17 December 2020     
ZTFLH:  TG424  
Fund: Liaoning Municipal Science and Technology Project(2020JH1/10100001);Liaoning Natural Science Foundation(2019JH3/30100039)
About author:  LU Shanping, Tel: (024)23971429, E-mail: shplu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.530     OR     https://www.cjmr.org/EN/Y2021/V35/I7/481

Current/AVoltage/V

Feed speed

/m·min-1

Travel speed

/m·min-1

17013.5-15.00.70.07
Table 1  Welding parameters of TIG
Fig.1  Schematic diagram of weld joint
ElementsCWCrMoSiMnFe
02C0.0210.042.030.620.290.57Bal.
05C/04W0.0420.0382.020.620.240.49Bal.
08C0.0750.042.050.630.250.49Bal.
0W0.05802.040.630.230.51Bal.
09W0.0540.0861.970.640.240.43Bal.
Base metal0.13<0.052.170.950.240.46Bal.
Table 2  Chemical compositions of deposited metal and base metal (mass fraction, %)
Fig.2  Location of Charpy specimens
Fig.3  Parameters of thermal cycles
Fig.4  OM images of multi-pass weld metal (a) OM image of weld joint; (b) OM image of upper weld metal
Fig.5  SEM images of various zones in upper weld metal (a) Melt zone (MZ), (b) Coarse grain heat affected zone (CGHAZ), (c) Fine grain heat affected zone (FGHAZ), (d) Inter-critical heat affected zone (ICHAZ), (e) Inter-critical coarse grain heat affected zone (ICCGHAZ), (f) Sub-critical heat affected zone (SCHAZ)
Primary zoneFirst thermal cycleSecond thermal cycle
MZCGHAZ(Tp>1200℃)ICCGHAZ(AC1<Tp<AC3)
SCHAZ(Tp<AC1)
FGHAZ(AC3<Tp<1200℃)
ICHAZ(AC1<Tp<AC3)
Table 3  Range of welding thermal cycles of various zones in upper weld metal
Fig.6  Characterization of intermediate weld metal (a, b) OM images, (c) OM image of necklace microstructure, (d) OM image of equiaxed crystal microstructure
Fig.7  Characterization of necklace microstructure (a) SEM images, (b) Color image of necklace microstructure,(c-d) EPMA maps
Fig.8  EBSD analysis of necklace microstructure (a) Image quality map, (b) Phase map, (c) Kernel average misorientation map
Fig.9  OM images of weld metal microstructure in different C contents (a, d) 02C, (b, e) 05C, (c, f) 08C; (a~c) OM images, (d~f) color images (GB represents granular bainite, LB represents lath bainite, BF represents bainite ferrite)
Fig.10  CCT curves in different C contents (a) 02C, (b) 05C, (c) 08C (F represents ferrite, P represents pearlite)
Fig.11  OM images of weld metal microstructure in different C contents (a, d) 0W, (b, e) 04W, (c, f) 09W; (a~c) OM images, (d~f) color images
Fig.12  CCT curves in different W contents (a) 0W, (b) 04W, (c) 09W
Fig.13  Impact energy of weld metal in different C contents
Fig.14  SEM images of intermediate weld metal in different C contents (a, d) 02C, (b, e) 05C, (c, f) 08C; (a~c) necklace microstructure, (d~f) equiaxed crystal microstructure
Fig.15  SEM images of secondary cracks in different C contents (a) 02C, (b) 05C, (c) 08C
Fig.16  SEM images of secondary cracks (a) secondary cracks in necklace microstructure, (b) the enlarged view of the secondary crack
Fig.17  Impact energy of weld metal in different W contents
Fig.18  SEM images of intermediate weld metal in different W contents (a, d) 0W, (b, e) 04W, (c, f) 09W; (a~c) necklace microstructure, (d~f) equiaxed crystal microstructure
Fig.19  SEM images of secondary cracks in different W contents: (a) 0W, (b) 04W, (c) 09W
1 Pan X X. Development of steam generator main materials for fast reactor [J]. World Nonferrous Metals, 2017, 9: 181
潘相相. 钠冷快堆蒸汽发生器主材研究进展 [J]. 世界有色金属, 2017, 9: 181
2 Guidez J, Martin L, Chetal S C, et al. Lessons Learned from Sodium-Cooled Fast Reactor Operation and Their Ramifications for Future Reactors with Respect to Enhanced Safety and Reliability [J]. Nucl. Technol., 2017, 164(2): 207
3 Li X D, Shang C J, Han C C, et al. Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel [J]. Acta Metall. Sin., 2016, 52(9): 1025
李学达, 尚成嘉, 韩昌柴等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响 [J].金属学报, 2016, 52(9): 1025
4 Mohseni P, Solberg J K, Karlsen M, et al. Cleavage Fracture Initiation at M-A Constituents in Intercritically Coarse-Grained Heat-Affected Zone of a HSLA Steel [J]. Metall. Mater. Trans. A, 2013, 45(1): 384
5 Li Y, Baker T N. Effect of morphology of martensite-austenite phase on fracture of weld heat affected zone in vanadium and niobium microalloyed steels [J]. Mater. Sci. Tech., 2013, 26(9): 1029
6 Li X D, Ma X P, Subramanian S V, et al. Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel [J]. Mat. Sci. Eng. A, 2014, 616: 141
7 Li X D, Fan Y R, Ma X P, et al. Influence of martensite-austenite constituents formed at different intercritical temperatures on toughness [J]. Mater. Design., 2015, 67: 457
8 Bayraktar E, Kaplan D. Mechanical and metallurgical investigation of martensite-austenite constituents in simulated welding conditions [J]. J. Mater. Process. Tech., 2004, 153: 87
9 Moeinifar S, Kokabi A H, Hosseini H R M. Effect of tandem submerged arc welding process and parameters of Gleeble simulator thermal cycles on properties of the intercritically reheated heat affected zone [J]. Mater. Design., 2011, 32(2): 869
10 Li Y, Crowther D N, Green M J W, et al. The effect of vanadium and niobium on the properties and microstructure of the intercritically reheated coarse grained heat affected zone in low carbon microalloyed steels [J]. Isij. Int 41., 2001, 41(1): 46
11 Kiani-Rashid A R. Effect of aluminum on stability of retained austenite in bainitic malleable cast iron [J]. Met. Sci. Heat. Treat., 2011, 53(7): 322
12 Miyata K, Sawaragi Y. Effect of Mo and W on the phase stability of precipitates in low Cr heat resistant steels [J]. Isij. International., 2001, 41(3): 281
13 Avazkonandeh-Gharavol M H, Haddad-Sabzevar M, Haerian A. Effect of chromium content on the microstructure and mechanical properties of multipass MMA, low alloy steel weld metal [J]. J. Mater. Sci., 2009, 44(1): 186
14 Lan L Y, Qiu C L, Song H Y, et al. Correlation of martensite–austenite constituent and cleavage crack initiation in welding heat affected zone of low carbon bainitic steel [J]. Mater. Lett., 2014, 125: 86
15 Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence [J]. Metall. Mater. Trans. A., 1994, 25(3): 563
16 You Y, Shang C J, Chen L, et al. Investigation on the crystallography of the transformation products of reverted austenite in intercritically reheated coarse grained heat affected zone [J]. Mater. Design., 2013, 43: 485
17 Nuruddin I K. Effect of welding thermal cycles on the heat affected zone microstructure and toughness of multi-pass welded pipeline steels [D]. UK: Cranfield University, 2012
18 Takayama N, Miyamoto G, Furuhara T. Chemistry and three-dimensional morphology of martensite-austenite constituent in the bainite structure of low-carbon low-alloy steels [J]. Acta Mater., 2018, 145: 154
19 Zhu J L, Liu S F, Cao Y, et al. Effect of cross rolling cycle on the deformed and recrystallized gradient in high-purity tantalum plate [J]. Acta Metall. Sin., 2019, 8(55): 1019
祝佳林, 刘施峰, 曹宇等. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响 [J]. 金属学报, 2019, 55(8): 1019
20 Wright S I, Nowell M M, Field D P. A review of strain analysis using electron backscatter diffraction [J]. Microsc. Microanal., 2011, 17(3): 316
21 Li X D, Shang C J, Ma X P, et al. Structure and crystallography of martensite-austenite constituent in the intercritically reheated coarse-grained heat affected zone of a high strength pipeline steel [J]. Mater. Charact., 2018, 138: 107
22 Cui Z Q, Qin Y C. Metallurgy and Heat Treatment [M]. Beijing: China Machine Press, 2000
崔忠圻, 覃耀春. 金属学与热处理 [M]. 北京: 机械工业出版社, 2000
23 Ritchie R O, Knott J F, Rice J. Relationship between critical tensile stress and fracture toughness in mild steel [D]. USA: Brown University, 1973
24 Griffiths J R, Owen D R J. An elastic-plastic stress analysis for a notched bar in plane strain bending [J]. J. Mech. Phys. Solids., 1971, 19(6): 419
25 Zhou Z L, Liu S H. Influence of local brittle zone on the fracture toughness of high-strength low-alloyed multipass weld metals [J]. Acta Metall. Sin., 2009, 11(2): 87
26 Liu Z C, Ren H P. Bainite and Bainite Transformation [M]. Beijing: Metallurgical Industry Press, 2009
刘宗昌, 任慧平. 贝氏体与贝氏体相变 [M]. 北京: 冶金工业出版社, 2009
27 Keehan E, Karlsson L, Andrén H O, et al. New developments with C-Mn-Ni high strength steel weld metals, Part A. Microstructure [J]. Weld. J., 2006, 85(9): 200
28 Brooksbank D. Tessellated stresses associated with some inclusions in steel [J]. J. Iron. Steel. Inst., 1969, 207: 474.
29 Klueh R L, Alexander D J, Kenik E A. Development of low-chromium, chromium-tungsten steels for fusion [J]. J. Nucl. Mater., 1995, 227(1): 11
30 Zhao J W, Jiang Z Y, Kim J S, et al. Effects of tungsten on continuous cooling transformation characteristics of microalloyed steels [J]. Mater. Design., 2013, 49: 252
31 Zajac S, Schwinn V, Tacke K H. Characterisation and quantification of complex bainitic microstructures in high and ultra-high strength linepipe steels [J]. Mater. Sci. Forum, 2005, 500: 387
32 Saeidi N, Ekrami A. Impact properties of tempered bainite-ferrite dual phase steels [J]. Mat. Sci. Eng. A., 2010, 527(21): 5575
33 Madej M. Tungsten carbide as an addition to high speed steel based composites [J]. Tungsten Carbide-Processing and Applications., 2012: 57
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!