Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (4): 291-298    DOI: 10.11901/1005.3093.2019.539
ARTICLES Current Issue | Archive | Adv Search |
Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores
GU Wei1, ZHANG Zhijian1(), YANG Jiaquan2()
1.Shanghai Zhixin Electric Amorphous Co. Ltd. , Shanghai 201799, China
2.Shanghai Zhixin Electric Co. Ltd. , Shanghai 202335, China
Cite this article: 

GU Wei, ZHANG Zhijian, YANG Jiaquan. Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores. Chinese Journal of Materials Research, 2020, 34(4): 291-298.

Download:  HTML  PDF(5991KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of particle size-grading and the packaging with various insulating agents on the properties of amorphous magnetic powder cores was investigated. Firstly, the variations of compression density, magnetic permeability, loss and DC biasing capability of amorphous magnetic powder cores were studied by changing the particle size-grading of amorphous powder. It was found that with magnetic powder of particle size-grading as 10%, 30%, 30% and 30% for particles with size in between -140~+170, -170~+200, -200~+350 and -350 ~+1000 mesh respectively, the compacting density of the amorphous magnetic powder cores increased, thereby the DC biasing capability increased, while the magnetic loss decreased. Secondly, different insulating agents were used to encapsulate the amorphous magnetic powder cores. The results show that using phosphoric acid as insulating agent can reduce the magnetic loss and improve the DC biasing capability more effectively than using water glass as insulating agent. Thirdly, low-melting glass frit not only acts as an insulator in the amorphous magnetic powder cores but also acts as a binder. Finally, the magnetic properties of the amorphous magnetic powder cores prepared by using the powder of recycled waste amorphous iron cores are not significantly different from those prepared by using the powder of the ordinary iron silicon boron alloy.

Key words:  metal materials      amorphous magnetic powder cores      particle size ratio      insulation scheme      magnetic properties     
Received:  18 November 2019     
ZTFLH:  TB31  
Fund: State Grid Corporation Science and Technology Project, Research and Application of Key Technologies for Integrated Environmental Protection of Amorphous Strips(No. 520940170010)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.539     OR     https://www.cjmr.org/EN/Y2020/V34/I4/291

Serial number-140~+170 mesh-170~+200 mesh-200~+350 mesh-350~+1000 mesh
Sample 110%30%30%30%
Sample 210%10%40%40%
Sample 340%40%10%10%
Sample 4100%---
Sample 5---100%
Sample 6-50%50%-
Table 1  Particle size composition of six amorphous powder samples
Case numberFirst stepSecond stepThird stepFourth step
Experiment aPhosphoric acid solutionLow melting glass powderSilicone resinZinc stearate
Experiment bWater glass solutionLow melting glass powderSilicone resinZinc stearate
Experiment cPhosphoric acid solution-Silicone resinZinc stearate
Experiment dWater glass solution-Silicone resinZinc stearate
Table 2  Four different insulation process plans
Serial numberRaw material sourcesParticle size composition

Insulation

scheme

Sample 1Recycling scrap amorphous iron coreSameSame
Sample 2Iron silicon boron alloySameSame
Table 3  Different raw material preparation schemes
Fig.1  XRD pattern of scrap amorphous iron core prepared into amorphous powder
Fig.2  Scanned electron microscopy image of the broken amorphous powder (particle size -140~+170 mesh)
Fig.3  Internal scanning electron microscope images of pressed amorphous magnetic powder core (a) longitudinal section; (b) upper surface
Fig.4  Particle size distribution of six groups of amorphous powder samples
Serial number

Fluidity

/s

Bulk density /g·cm-3

Core weight

/g

Pressed magnetic ring density

/g·cm-3

Magnetic permeability

μ

Loss Pcv

(100 kHz/50 mT)

/kw·m-3

DC bias capability

/%

Sample 13.502.8525.855.756013068.5%
Sample 26.502.7525.655.706013067.0%
Sample 33.602.8425.805.726015568.0%
Sample 43.202.8025.295.626016566.0%
Sample 50.002.6024.755.506013565.0%
Sample 64.002.8425.875.756013068.0%
Table 4  Effect of amorphous powder with different particle size ratio on magnetic properties
Fig.5  Relationship between DC bias capability and compaction density of six groups of samples
Fig.6  Relationship between bulk density and compaction density of six groups of samples
Case number

Resistivity ρ

/Ω·m

Loss Pcv

(100 kHz/50 mT)

/kw·m-3

DC bias capability

(100 Oe)

/%

Strength

/N

Experiment a2.113068.5%320
Experiment b1.515066.5%330
Experiment c2.013568.2%160
Experiment d1.416066.8%250
Table 5  Effect of different insulation schemes on magnetic properties and strength
Fig.7  Image and energy spectrum analysis of the internal shape of the amorphous magnetic powder core after heat treatment (a) the internal picture of the amorphous magnetic powder core of sample a; (b) the internal picture of the amorphous magnetic powder core of sample c; (c) the sample a scan of the white particle's energy spectrum component test
Serial number

Raw material

sources

Loss Pcv

(100 kHz/50 mT)

/kw·m-3

DC bias capability

(100 Oe)

/%

Sample 1Recycling scrap amorphous iron core13068.5%
Sample 2

Iron silicon

boron alloy

12968.6%
Table 6  Effect of different raw materials on the properties of amorphous magnetic powder cores
[1] Shokrollahi H. The magnetic and structural properties of the most important alloys of iron produced by mechanical alloying [J]. Materials and Design, 2009, 30(9): 3374
[2] Du Y. Study on preparation and properties of high frequency iron-based composite soft magnetic powder core [D]. Nanchang: Nanchang University, 2009
(杜琰. 高频铁基复合材料软磁粉芯制备及其性能研究 [D]. 南昌: 南昌大学, 2009)
[3] Li J Y, He P. Study on improving the magnetic properties of Ni-Fe powder core [J]. J.Magn. Mater. Device, 1995, 26(3): 18
(李晋尧, 何平. 提高Ni-Fe粉芯磁性能的研究 [J]. 磁性材料及器件, 1995, 26(3): 18)
[4] Wei D, Liu S Y, Zhu J G, et al. Prepration of soft magnetic sendust powders and effect of particle size matching on the properties of powder core [J]. J. Magn. Mater. Device, 2014, 45(3): 29
(魏鼎, 刘善宜, 祝家贵等. 铁硅铝粉末制备及配比对磁粉芯性能的影响 [J]. 磁性材料及器件, 2014, 45(3): 29)
[5] Takemoto Satoshi, Saito Takanobu. Effects of crystal grain size and particle size on core loss for Fe-Si compressed cores [J]. Materials Science Forum, 2007, 534-536: 1313
[6] Xu Y C. Study on temperature and pressure of Fe_(78)Si_9B_(13) amorphas soft magnetic powder core [D]. Guangzhou: Guangdong University of Technology, 2015
(徐永春. Fe_(78)Si_9B_(13)非晶软磁磁粉芯温压的研究 [D]. 广州: 广东工业大学, 2015)
[7] Liu H J. Study on particle size proportion of metal soft magnetic powder core [D]. Hefei: University of Technology, 2016
(刘红军. 金属软磁粉芯的粒度配比研究 [D]. 合肥: 合肥工业大学, 2016)
[8] Huang L. Study on preparation process and performagnce of FeSiB magnetic powder core [D]. Guangzhou: South China University of Technology, 2018
(黄垒. FeSiB磁粉芯的制备工艺与性能研究 [D]. 广州: 华南理工大学, 2018)
[9] Li T Y, Ding W T, Geng W B,et al. Influence of soft magnetic powder characteristics on the performance of metallic soft magnetic powder core [J]. Materials Review, 2018, 32(z1): 124
(李天应, 丁文涛, 耿文斌等. 软磁合金粉末特性对金属软磁粉芯的影响 [J]. 材料导报, 2018, 32(z1): 124)
[10] Liu F f, BAKER A P, Weng L Q, et al. Study of phosphate coatings for Fe based soft magnetic composites [J]. Development and Application of Materials, 2007, 22(5): 11
(刘菲菲, BAKER A P, 翁履谦等. 铁粉基软磁复合材料绝缘包覆层的研究 [J]. 材料开发与应用, 2007, 22(5): 11)
[11] Taghvaei A. H, Shokrollahi H, Janghorban K,et al. Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites [J]. Materials & Desigh,2009, 30(10): 3989
[12] Wan J, Zheng Z G, Wang J, et al. Fabrication and soft magnetic of Fe-Si-B amorphous magnetic powder cores [J]. Electronic Components and Materials, 2012, 31(10): 45
(万娟, 郑志刚, 王进等. Fe-Si-B非晶磁粉芯的制备及其软磁性能 [J]. 电子元器件与材料, 2012, 31(10): 45)
[13] Yao L J, Yao Z, Yu W Y. Research on ways reducing magnetic powder core loss [J]. Journal of Shanghai Iron and Steel Research,2005, (3): 55
(姚丽姜, 姚中, 虞维扬. 降低FeSiAl磁粉芯损耗方法研究 [J]. 上海钢研, 2005, (3): 55)
[1] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[2] XIAO Han, ZHOU Yuhang, CHEN Lei, ZHANG Xiongchao, CUI Yunxin, XIONG Chi. Effect of Isothermal Time on Microstructure and Properties of Thixo-extruded Tin Bronze Bushing[J]. 材料研究学报, 2022, 36(9): 641-648.
[3] HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2022, 36(9): 649-659.
[4] HE Ying, LI Chaoqun, CHEN Xiaoli, LONG Zhimei, LAI Jiaqi, SHAO Bin, MA Yilong, CHEN Dengming, DONG Jiling. Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties[J]. 材料研究学报, 2022, 36(5): 321-331.
[5] FU Yongjun,LEI Jialiu,LIAO Qingling,ZHAO Dongnan,ZHANG Yucheng. Effect of Residual Carbon on Primary and Secondary Recrystallization of Grain-oriented Silicon Steel[J]. 材料研究学报, 2020, 34(2): 118-124.
[6] TANG Jin, LI Dan, QIN Jianchun, ZENG Jishu, HE Hao, LI Yimin, LIU Chen. Microstructure and Magnetic Properties of Fe2W-type Ferrites BaFe2-x2+CoxFe163+O27 (x=0.0~0.8)[J]. 材料研究学报, 2020, 34(12): 915-920.
[7] PAN Yun, LIU Tiancheng, LI Guangmin, DAI Baiyang, LV Na, ZHANG Wei, TANG Dongdong. Effect of Tension Annealing Induced-anisotropy on Magnetic Properties of Nanocrystalline Alloy[J]. 材料研究学报, 2020, 34(10): 753-760.
[8] Xiaodong LIU,Shuyong TAN,Wenyi HUO,Xuhai ZHANG,Qiyue SHAO,Feng FANG. Effect of Nitrogen Flow Ratio on Microstructure and Property of High-Entropy Alloy Films (CoCrFeNi)Nx Prepared by Magnetron Sputtering[J]. 材料研究学报, 2019, 33(3): 185-190.
[9] Zhiping HU, Yunbo XU, Hui LIU, Le WANG. Microstructure Evolution and Mechanical Properties of Cold-rolled Mn-Al TRIP Steel with δ Ferrite[J]. 材料研究学报, 2018, 32(3): 177-183.
[10] Xuemeng WANG,Siqian ZHANG,Ziyao YUAN,Lijia CHEN. Effect of Heat Treatment on Mechanical Properties of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy[J]. 材料研究学报, 2017, 31(6): 409-414.
[11] PANG Jianfeng, HUANG Wenjuan, LU Yanqiu, LI Ling, QIU Quan, MA Xijun, XIE Xingyong. Preparation and Microwave Absorption Properties of Cenospheres-Barium Ferrite Composites[J]. 材料研究学报, 2016, 30(4): 314-320.
[12] LI Yuhai, ZHANG Baibing, DONG Xuguang, WANG Shuai. Comparative Study on Corrosion Resistance of Micro Arc Oxidation Ceramic Coatings on Mg-Mn-RE Alloy[J]. 材料研究学报, 2016, 30(3): 235-240.
[13] Yongwen JIANG,Tao NIU,Chenggang AN,Xinlang WU,Caixia ZHANG,Xiaoli DAI. Strain Aging Behavior of X70 Pipeline Steel[J]. 材料研究学报, 2016, 30(10): 767-772.
[14] Ruiting MA,Xiao WANG,Haitao ZHAO. Microwave Absorbing and Magnetic Properties of the Polyaniline-Co0.7Cr0.1Zn0.2Fe2O4 Composites[J]. 材料研究学报, 2015, 29(8): 622-626.
[15] Lin LU,Longgang HOU,Hebin WANG,Jinxiang ZHANG,Hua CUI,Jinfeng HUANG,Yongan ZHANG,Jishan ZHANG. Hot Deformation of Spray-Formed Nb-Containing High Speed Steel—A Study Using Processing Map[J]. 材料研究学报, 2015, 29(7): 496-504.
No Suggested Reading articles found!