Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (11): 824-830    DOI: 10.11901/1005.3093.2019.178
ARTICLES Current Issue | Archive | Adv Search |
Wave-Absorption Properties of Epoxy /Ethyl Cellulose Microcapsule Modified by Carbonyl Iron Powder
WANG Xingang(),WANG Xingjing,XIA Long,XU Wei
School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
Cite this article: 

WANG Xingang,WANG Xingjing,XIA Long,XU Wei. Wave-Absorption Properties of Epoxy /Ethyl Cellulose Microcapsule Modified by Carbonyl Iron Powder. Chinese Journal of Materials Research, 2019, 33(11): 824-830.

Download:  HTML  PDF(5777KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbonyl iron powder was taken as electromagnetic wave absorbent, then the epoxy/ ethyl cellulose microcapsule incorporated with carbonyl iron particles was prepared by means of solvent evaporation. The wave-absorbing property, particle size distribution, characteristics of particle and chemical structure of the microcapsules were characterized by means of vector network analyzer, laser particle size analyzer, ESEM-EDS and FTIR. The result shows that the wall material of the microcapsules consists of carbonyl iron powder and ethyl cellulose, thus the wave-absorption properties of microcapsules incorporated with carbonyl iron powder were reinforced. The smaller carbonyl iron powder has a larger interaction area with electromagnetic waves, therefore, the microcapsules incorporated with smaller particle carbonyl iron particles will exhibit better wave-absorption properties. At 18 GHz, the reflection loss of microcapsules without carbonyl iron particles was -1.63 dB, but the reflection loss of the microcapsules incorporated with 50% carbonyl iron particles can reach -5.08 dB and -5.44 dB for the particle size of 3 μm and 0.5 μm respectively, correspondingly, which are 3.45 dB and 3.81 dB lower than that for microcapsule without carbonyl iron particles, besides, the microcapsules incorporated with 50% carbonyl iron particles of 0.5 μm show excellent dispersibility as well.

Key words:  composite      wave-absorbing property      microcapsule      carbonyl iron powder      self-healing      ethyl cellulose     
Received:  28 March 2019     
ZTFLH:  TB333  
Fund: National Natural Science Foundation of China(51972158);National Natural Science Foundation of China(51562024);Jiangxi Province Outstanding Youth Talent Scheme(20162BCB23014);The Special Innovation Foundation for Graduate of Nanchang University(CX2018048)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.178     OR     https://www.cjmr.org/EN/Y2019/V33/I11/824

Fig.1  The manufacture flow chart of microcapsules
No1234567
The partical size of carbonyl iron powder/μm-3330.50.50.5
The dosage of CIP/%0103050103050
Table 1  Dosage of CIP
Fig.2  Reflection loss curves of different microcapsules
Fig.3  Particle size distribution of microcapsule (a), microcapsule (3 μm、50%) (b), microcapsule (0.5 μm、50%) (c) and gauss curve fitting for curve a (d)
Fig.4  ESEM images of microcapsules (a) 0%, (b) 10%、3 μm, (c) 30%、3 μm, (d) 50%、3 μm, (e) 10%、0.5 μm, (f) 30%、0.5 μm, (g) 50%、0.5 μm
Fig.5  ESEM images of microcapsule (a) 0%, (b) 10%、3 μm, (c) 30%、3 μm, (d) 50%、3 μm, (e) 10%、0.5 μm, (f) 30%、0.5 μm, (g) 50%、0.5 μm
Fig.6  FTIR spectra of microcapsule (a) , core material of microcapsule (b), microcapsule(3 μm、50%)(c), shell materials of microcapsule(3 μm、50%)(d) and carbonyl iron powder (e)
Fig.7  Plane scans of microcapsules (3 μm、50%) (a) The picture of ESEM, (b) EDS mapping of Fe
Fig.8  Plane scans of microcapsules (0.5 μm、50%) (a) The picture of ESEM, (b) EDS mapping of Fe
Fig.9  Spectrum of individual microcapsule (a) The picture of ESEM, (b) EDS liner scanning of Fe
Fig.10  Schematic illustration of multiple scattering and refraction in composites (a) Schematic illustration for the structure of microcapsule, (b) Multiple scattering and refraction in composites
[1] Ge C Q, Wang L Y, Liu G. Solution blending preparation and electromagnetic properties of carbon nanotubes/planar anisotropic carbonyl iron composite [J]. Acta Materiae Compositae Sinica, 2018, 35(7): 1912
[1] ((葛超群, 汪刘应, 刘 顾. 碳纳米管/平面各向异性羰基铁复合材料的液相共混法制备及其电磁性能 [J]. 复合材料学报, 2018, 35(7): 1912)
[2] Zhou Y Y, Xie H, Zhou W C. Current research status of oxidation resistance of carbonyl iron powders [J]. Mater. Rev, 2018, 32(5): 749
[2] (周影影, 谢 辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 材料导报, 2018, 32(5): 749)
[3] Xiong G X, Deng X P, Zeng D H, et al. Property and preparation of carbonyl iron powder/polymethacrylate/ poly-aniline composite absorbents [J]. Acta Materiae Compositae Sinica, 2008, 25(4): 35
[3] (熊国宣, 邓雪萍, 曾东海等. 羰基铁粉/聚甲基丙烯酸甲酯/聚苯胺复合吸波剂的制备与性能 [J].复合材料学报, 2008, 25(4): 35)
[4] Cheetham A K, Rao C N R. Materials science: There's room in the middle [J]. Science, 2007, 318(5847): 58
[5] He D X, Qiu Y, Li L L, et al. Large-scale solvent-thermal synthesis of graphene/magnetite/conductive oligomer ternary composites for microwave absorption [J]. Sci. China-Mater., 2015, 58(7): 566
[6] Kimura S, Kato T, Hyodo T, et al. Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method [J]. J. Magn. Magn. Mater., 2007, 312(1): 181
[7] Wang Z J, Li K Z, Wang C, et al. Wave-absorbing properties of carbonyl iron powder/carbon fiber reinforced cement based composites [J]. Journal of the Chinese Ceramic Society, 2011, 39(01): 69
[7] (王振军, 李克智, 王 闯等. 羰基铁粉-碳纤维水泥基复合材料的吸波性能 [J]. 硅酸盐学报, 2011, 39(01): 69)
[8] Cui R Z, Wang B C, Wang T, et al. Electromagnetic properties and microwave absorbing characteristics of carbonyl iron/Si-epoxy matrix composites [J]. Journal of Functional Materials, 2011, 42(2): 218
[8] (崔荣振, 王博翀, 王 涛等. 羰基铁/有机硅环氧树脂复合材料的电磁性质及微波吸收性质 [J]. 功能材料, 2011, 42(2): 218)
[9] Zou H Z, Wan W T, Yang M H, et al. Preparation and property of thermal absorbing materials via aluminum oxide and carbonyl iron [J]. Polymer Materials Science & Engineering, 2019, 35(02): 136
[9] (邹海仲, 万炜涛, 杨名华等. 复合粉体制备导热吸波材料及其表征 [J]. 高分子材料科学与工程, 2019, 35(02): 136)
[10] Weng X, Li B, Zhang Y, et al. Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties [J]. J. Alloy. Compd., 2017, 695: 508
[11] Drmota A, Koselj J, Drofenik M, et al. Electromagnetic wave absorption of polymeric nanocomposites based on ferrite with a spinel and hexagonal crystal structure [J]. J. Magn. Magn. Mater., 2012, 324(6): 1225
[12] Tong G X, Guan J G, Wang W, et al. Preparation and properties of carbonyl iron/A1203 core-shell composite particles. [J]. Chinese Journal of Materials Research, 2008(01): 102
[12] (童国秀, 官建国, 王 维等. 羰基铁/Al2O3核壳复合粒子的制备和性能 [J]. 材料研究学报, 2008(01): 102)
[13] Guo J H, Shao J Y, Xu F, et al. RAM-microencapsulated phase change infrared and microwave stealth composites [J]. Fine Chemicals, 2017, 34(12): 1350
[13] (郭军红, 邵竞尧, 许 芬等. RAM-相变微胶囊红外微波隐身复合材料 [J]. 精细化工, 2017, 34(12): 1350)
[14] Wang X G, Xia L, Fu X G, et al. Particle characteristics and sustained release properties of epoxy resin/ethyl cellulose microcapsule [J/OL]. Journal of Building Materials: 1-8[2019-03-20].
[14] (王信刚, 夏 龙, 扶兴国等. 环氧树脂/乙基纤维素微胶囊的颗粒特性与缓释性能[J/OL]. 建筑材料学报: 1-8[2019-03-20].)
[15] Xie S, Ji Z J, Yang Y, et al. Recent progress in electromagnetic wave absorbing building materials [J]. Mater. Rev, 2016, 30(13): 63
[15] (解帅, 冀志江, 杨 洋等. 电磁波吸收建筑材料的应用研究进展 [J]. 材料导报, 2016, 30(13): 63)
[16] Xie G Z, Wang P, Yuan L K, et al. The effect of coupling agent on the microwave properties of the melt-spun iron/earth nanocomposites [J]. J. Appl. Polym. Sci., 2009, 114(4): 2344
[17] Cao M S, Song W L, Hou Z L, et al. The effects of temperature and frequency on the dielectric properties, ele- ctromagnetic interference shielding and microwave-absorbing of short carbon fiber/ silica composites [J]. Carbon, 2010, 48(3): 788
[18] Ji R L, Cao C B, Chen Z, et al. Solvothermal synthesis of CoxFe3-xO4 spheres and their microwave absor- ption properties. [J]. J. Mater. Chem. C, 2014, 2(29): 5944
[19] Wen G, Zhao X, Liu Y, et al. Influence of Fe-B addition on electromagnetic wave absorption properties of RGO composite [J]. J. Mater. Sci. -Mater. Electron., 2018, 29(12): 1
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[10] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
No Suggested Reading articles found!