Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (11): 815-823    DOI: 10.11901/1005.3093.2019.151
ARTICLES Current Issue | Archive | Adv Search |
Effect of Aging Temperature on Microstructure and Properties of 00Cr12Ni10MoTi Maraging Stainless Steel
ZHANG Honglin1,2,MA Dongping4,LIU Rujie1,3,WANG Taijiang4,XU Bin1,SUN Mingyue1(),LI Dianzhong1,LI Yiyi1,YU Hui3
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
4. China Aerodynamics Research and Development Center, Mianyang 621000, China
Cite this article: 

ZHANG Honglin,MA Dongping,LIU Rujie,WANG Taijiang,XU Bin,SUN Mingyue,LI Dianzhong,LI Yiyi,YU Hui. Effect of Aging Temperature on Microstructure and Properties of 00Cr12Ni10MoTi Maraging Stainless Steel. Chinese Journal of Materials Research, 2019, 33(11): 815-823.

Download:  HTML  PDF(9414KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of aging temperature on the microstructure and mechanical properties of 00Cr12Ni10MoTi maraging stainless steel was investigated by means of X-ray diffractometer (XRD), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), tensile tester and impact tester. The results show that the strength increases gradually with the increase of aging temperature, through the enhanced precipitation strengthening. A large amount of rod-like Ni3Ti precipitated on the matrix when aged at 500℃, which leads the strength of the steel to the peak value. The impact toughness at room temperature and low temperature decreases with the increase of aging temperature, and the lowest impact energy at low temperature (-196℃) is 51 J for the steel aged at 400℃, while the impact toughness of the steel increases again when aging temperature continues rising to 500℃, which is related to the formation of reversed austenite in martensite matrix. The existence of austenite phase can effectively inhibit crack initiation and relieve its propagation. Aging at 500℃ can effectively exert the precipitation strengthening effect of Ni3Ti and the toughening effect of reversed austenite, achieving better matching of strength and toughness.

Key words:  metallic materials      00Cr12Ni10MoTi      microstructure      aging strengthening      Ni3Ti      reversed austenite     
Received:  12 March 2019     
ZTFLH:  TG142.1  
Fund: National Key Research and Development Program(2016YFB0300401);National Natural Science Foundation of China(51774265);Program of CAS Interdisciplinary Innovation Team(ZDRW-CN-2017-1)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.151     OR     https://www.cjmr.org/EN/Y2019/V33/I11/815

ElementCMnSiNiCrMoPSAlTiFe
Content0.0140.00750.07910.111.880.650.0040.0010.0660.21Bal.
Table 1  Chemical composition of the tested steel (mass fraction/%)
Fig.1  Effect of aging temperature on mechanical properties of the tested steel (a) yield strength and tensile strength; (b) elongation after fracture and reduction of area; (c) impact energy
Fig.2  Cryogenic impact fracture morphology of the tested steel under different aging temperature (a) 350℃; (b) 400℃; (c) 450℃; (d) 500℃; (e) 550℃
Fig.3  XRD spectra of solid solution state and aging state samples at different temperature (a); Volume fraction of austenite of solid solution state and aging state samples at different temperature (b)
Fig.4  Microstructure of 00Cr12Ni10MoTi samples (a) OM image of solid solution state sample; (b) SEM image of solid solution state sample; (c) OM image of aging state sample at 500℃; (d) SEM image of aging state sample at 500℃
Fig.5  EBSD results of the tested steel under different condition (a) solid solution state; (b) aging state at 500℃
Fig.6  TEM images of the tested steel under different condition (a) bright-field image of solid solution state; (b) bright-field image of aging state at 500℃; (c) bright-field image of precipitates in aging state at 500℃; (d) dark-field (DF) image of precipitates in aging state at 500℃; (e) [011]M selected area diffraction (SAD) pattern of matrix in aging state at 500℃; (f) schematics of SAD pattern with [011]M
Fig.7  Equilibrium phase diagram of 00Cr12Ni10MoTi
[1] Jiang Y, Yin Z D, Zhu J C, et al. Development of ultra-high strength maraging steel [J]. Special Steel, 2004, 25 (2): 1
[1] (姜 越, 尹钟大, 朱景川等. 超高强度马氏体时效钢的发展 [J]. 特殊钢, 2004, 25(2): 1)
[2] Yang Z Y, Liu Z B, Liang J X, et al. Development of maraging stainless steel [J]. Trans. Mater. Heat., 2008, 29(4): 1
[2] (杨志勇, 刘振宝, 梁剑雄等. 马氏体时效不锈钢的发展 [J]. 材料热处理学报, 2008, 29(4): 1)
[3] Guo Z, Sha W, Vaumousse D, et al. Microstructural evolution in a PH13-8 stainless steel after ageing [J]. Acta. Mater., 2003, 51(1): 101
[4] Leitner H, Schober M, Schnitzer R, et al. Splitting phenomenon in the precipitation evolution in an Fe-Ni-Al-Ti-Cr stainless steel [J]. Acta. Mater., 2010, 58(4): 1261
[5] Ping D H, Ohnuma M, Hirakawa Y, et al. Microstructural evolution in 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened stainless steel [J]. Mater. Sci. Eng. A, 2005, 394(1-2): 285
[6] Thuvander M, Anderson M, Stiller K. Atom probe tomography investigation of lath boundary segregation and precipitation in a maraging stainless steel [J]. Ultramicroscopy, 2013, 132: 265
[7] Kim S J, Wayman C M. Strengthening behavior and embrittlement phenomenon in Fe-Ni-Mn-(Ti) maraging alloys [J]. Mater. Sci. Eng. A, 1996, 207(1): 22
[8] Ifergane S, Pinkas M, Barkay Z, et al. The relation between aging temperature, microstructure evolution and hardening of Custom 465? stainless steel [J]. Mater. Charact., 2017, 127: 129
[9] Sinha P P, Sivakumar D, Babu N S, et al. Austenite reversion in 18 Ni Co-free maraging steel [J]. Steel Research, 1995, 66(11): 490
[10] Wen Z M, Su J, Yang Z Y, et al. Effect of pre-Treatment temperature on the strength of 00Cr12Ni10MoTi maraging stainless steel [J]. Iron and Steel, 2011, 46(9): 78
[10] (文志旻, 苏 杰, 杨卓越等. 预处理温度对00Cr12Ni10MoTi马氏体不锈钢强度的影响 [J]. 钢铁, 2011, 46(9): 78)
[11] Ge P, Yang Z Y, Ding Y L. Effect of pre-heat treatment on mechanical properties of high-strength stainless steel 00Cr12Ni10MoTi for cryogenic applications [J]. Heat Treatment of Metals, 2013, 38(4): 60
[11] (葛 鹏, 杨卓越, 丁雅莉. 预处理对低温用高强度00Cr12Ni10MoTi力学性能的影响 [J]. 金属热处理, 2013, 38(4): 60)
[12] Wang P. Microstructure-mechanical properties control of 13Cr4Ni stainless steel and application in Three Gorges hydraulic turbine runner [D]. Beijing: Graduate University of Chinese Academy of Sciences, 2011
[12] (王 培. 13Cr4Ni不锈钢组织性能控制及其在三峡水轮机转轮上的应用 [D]. 北京: 中国科学院研究生院, 2011)
[13] Hou H, Qi L, Zhao Y H. Effect of austenitizing temperature on the mechanical properties of high-strength maraging steel [J]. Mater. Sci. Eng. A, 2013, 587(18): 209
[14] Markfeld A, Rosen A. The effect of reverted austenite on the plastic deformation of maraging steel [J]. Mater. Sci. Eng. A, 1980, 46(2): 151
[15] Xie Z J, Ren Y Q, Zhou W H, et al. Stability of retained austenite in multi-phase microstructure during austempering and its effect on the ductility of a low carbon steel [J]. Mater. Sci. Eng. A, 2014, 603(14): 69
[16] Schnitzer R, Radis R, Nohrer M, et al. Reverted austenite in PH 13-8Mo maraging steels [J]. Mater. Chem. Phys., 2010, 122(1): 138
[17] Song Y Y, Ping D, Yin F, et al. Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel [J]. Mater. Sci. Eng. A, 2010, 527(3): 614
[18] Sha W, Guo Z. Maraging Steels: Modelling of Mircrostructure, Properties and Applications, 1st ed [M]. New York: Woodhead Publishing, 2009
[19] He Y, Yang K, Sha W. Microstructure and mechanical properties of a 2000MPa grade Co-free maraging steel [J]. Metall. Mater. Trans. A, 2005, 36(9): 2273
[20] Lv Z P, Jiang S H, He J Y, et al. Second phase strengthening in advanced metal materials [J]. Acta. Mater. Sin, 2016, 52(10): 1183
[20] (吕昭平, 蒋虽合, 何骏阳等. 先进金属材料的第二相强化 [J]. 金属学报, 2016, 52(10): 1183)
[21] Pereloma E V, Shekhter A, Miller M K, et al. Ageing behavior of an Fe020Ni-1.8Mn-1.6Ti-0.59Al (wt%) maraging alloy: clustering, precipitation and hardening [J]. Acta. Mater., 52(19): 5589
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!