|
|
Effect of C Addition on Microstructure and Mechanical Properties of Ti-V-Cr Burn Resistant Titanium Alloys |
Huanying SUN1( ),Jun ZHAO1,Yi'an LIU1,Quan ZHANG1,Jingxia CAO2,Xu HUANG2 |
1. North China Institute of Aerospace Engineering, Langfang 065000, China 2. Beijing Institute of Aeronautical Materials, Beijing 100095, China |
|
Cite this article:
Huanying SUN,Jun ZHAO,Yi'an LIU,Quan ZHANG,Jingxia CAO,Xu HUANG. Effect of C Addition on Microstructure and Mechanical Properties of Ti-V-Cr Burn Resistant Titanium Alloys. Chinese Journal of Materials Research, 2019, 33(7): 537-542.
|
Abstract The ingots with 120 mm diameter of burn resistant Ti-alloys with nominal composition of Ti-35V-15Cr, Ti-35V-15Cr-0.075C and Ti-35V-15Cr-0.15C were produced by vacuum arc consumable smelting. These ingots were deformed into bars with 25 mm diameter by sheathed extrusion. The microstructures of the ingots and extruded bars of burn resistant Ti-alloys were investigated. The tensile property, thermal stability and creep properties of the extruded bars of burn resistant Ti-alloys were tested under different conditions. The results show that burn resistant Ti-alloys with C addition have better ductility in tensile test due to refined grain size resulted from the sheathed extrusion process. Carbide can act as a stable sink for dissolved oxygen in the matrix, to improve the tensile ductility of the alloy even after hot exposure. In sum, the moderate C addition can improve the creep properties of burn resistant Ti-alloys.
|
Received: 31 January 2019
|
|
Fund: Key Projects of Hebei Educational Committee(ZD2018239);Langfang Science and Technology Project(2018011047);Foundation of North China Institute of Aerospace Engineering(ZD-2016-03) |
[1] | Cao J X, Huang X, Mi G B, et al. Research progress on application technique of Ti-V-Cr burn resistant titanium alloys [J]. J. Aeronaut. Mater., 2014, 34(4): 92 | [1] | (曹京霞, 黄 旭, 弥光宝等. Ti-V-Cr系阻燃钛合金应用研究进展 [J]. 航空材料学报, 2014, 34(4): 92) | [2] | Hansen J O, Sound H, Novotnak D, et al. Heat treatment to reduce embrittlement of titanium alloys [P]. US Paten: 5397404, 1995 | [3] | Seagle S R. The state of the USA titanium industry in 1995 [J]. Mater. Sci. Eng. A, 1996, 213: 1 | [4] | Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng. A, 1996, 213: 103 | [5] | Mi G B, Huang X, Cao J X, et al. Microstructure characteristics of burning products of Ti-V-Cr type fireproof titanium alloy by frictional ignition [J]. Acta. Phys. Sin., 2016, 65(5): 056103 | [5] | (弥光宝, 黄 旭, 曹京霞等. 摩擦点火Ti-V-Cr系阻燃钛合金燃烧产物的组织特征 [J]. 物理学报, 2016, 65(5): 056103) | [6] | Mi G B, Huang X, Cao J X, et al. Frictional ignition of Ti40 fireproof titanium alloys for aero-engine in oxygen-containing media [J]. Trans. Nonferrous Met. Soc. China., 2013, 23: 2270 | [7] | Sun H Y, Cao J X, Wang B, et al. Optimization of hot deformation parameters of burn resistant titanium alloy by using processing map [J]. Rare. Metal. Mat. Eng., 2013, 42(11): 2351 | [7] | (孙欢迎, 曹京霞, 王 宝等. 应用加工图技术优化阻燃钛合金高温变形工艺 [J]. 稀有金属材料与工程, 2013, 42(11): 2351) | [8] | Lu S Q, Ouyang D L, Cui X, et al. Dynamic recrystallization behavior of burn resistant titanium alloy Ti-25V-15Cr-0.2Si [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1003 | [9] | Sun H Y, Liu Y A, Zhao J, et al. Hot deformation behavior and mechanism of as-extruded burn resistant titanium alloy [J]. Chin. J. Nonferrous. Met., 2017, 27(6): 1162 | [9] | (孙欢迎, 刘翊安, 赵 军等. 挤压态阻燃钛合金高温变形行为及机理 [J]. 中国有色金属学报, 2017, 27(6): 1162) | [10] | Lai Y J, Zhiang P X, Wang K X, et al. A comparative study about microstructure and mechanical properties of Ti-V-Cr type burn-resistant titanium alloys slabs [J]. Mater. Rev. B, 2016, 30(10): 57 | [10] | (赖运金, 张平祥, 王凯旋等. Ti-V-Cr系阻燃钛合金厚板组织与力学性能对比研究 [J]. 材料导报B: 研究篇, 2016, 30(10): 57) | [11] | Zhu Y C, Zeng W D, Peng W W, et al. Cracking behavior of Ti40 titanium alloy in hot compression [J]. Rare. Metal. Mat. Eng., 2013, 42(10): 2088 | [11] | (朱艳春, 曾卫东, 彭雯雯等. Ti40合金热压缩变形过程的开裂行为研究 [J]. 稀有金属材料与工程, 2013, 42(10): 2088) | [12] | Lei L M. Microstructure and mechanical properties of non-burning titanium alloy with lower cost [D]. Beijing: Beijing Institute of Aeronautical Materials, 2002 | [12] | (雷力明. 低成本阻燃钛合金微观组织和力学性能研究 [D]. 北京: 北京航空材料研究院, 2002) | [13] | Lei L M, Huang X, Wu X R, et al. Effects of second phases on tensile fracture behavior of Ti-25V-15Cr-2Al-0.2C-x alloys [J]. Rare Metals, 2004, 28(1): 47 | [13] | (雷力明, 黄 旭, 吴学仁等. 第二相对Ti-25V-15Cr-2Al-0.2C-x合金拉伸断裂行为的影响 [J]. 稀有金属, 2004, 28(1): 47) | [14] | Zhao H X, Huang X, Wang B, et al. Effect of heat-treatment on the microstructure and thermal stability properties of Ti-35V-15Cr-0.15Si-0.05C titanium alloy [J]. J. Mater. Eng., 2013, (7): 73 | [14] | (赵红霞, 黄 旭, 王 宝等. 热处理对Ti-35V-15Cr-0.15Si-0.05C合金热稳定性能的影响 [J]. 材料工程, 2013, (7): 73) | [15] | Lei L M, Huang X, Sun F S, et al. Study of the creep deformation structure in Ti-25V-15Cr-2Al-2Mo-0.2C non-burning β titanium alloy [J]. Rare. Metal. Mat. Eng., 2004, 33(5): 498 | [15] | (雷力明, 黄 旭, 孙福生等. Ti-25V-15Cr-2Al-2Mo-0.2C阻燃β钛合金的蠕变变形结构研究 [J]. 稀有金属材料与工程, 2004, 33(5): 498) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|