Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (6): 401-408    DOI: 10.11901/1005.3093.2018.714
ARTICLES Current Issue | Archive | Adv Search |
Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution
Xu ZHANG1,2,3,Shanping LU1,2()
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution. Chinese Journal of Materials Research, 2019, 33(6): 401-408.

Download:  HTML  PDF(14434KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Welding overlayers of three welding wires containing various concentrations of Mo have been fabricated as the experimental materials via multiple semiautomatic gas tungsten arc welding (GTAW) with cold-wire feed. Then post-weld heat treatment is carried out at 620℃ for 29 h to reduce the welding residual stress. The corrosion resistance of the as-weld and heat-treated Ni-based weld metals is assessed in 65% nitric acid aqueous solution at 117℃ for 48 h. The results show that weld metals were suffered from several types of localized corrosion in the test medium, such as intergranular corrosion (IGC), pitting corrosion and interdendritic corrosion (IDC). Mo can promote the precipitation of Laves phase in the interdendritic region. Due to the electrochemical difference between the Laves phases and the matrix, pitting susceptibility of the Ni-based weld metals increase with the increase of Mo content. Further, the IDC takes place in the heat-treated weld metals. The electrochemical difference between the dendrite and the interdendritic region is the key factor for IDC. Mo can influence the diffusion of Ni and Cr during the post heat treatment and decrease the depletion degree of Cr and Ni in the interdendritic zone, then the degree of IDC drops for the heat-treated weld metals with addition of Mo.

Key words:  materials failure and protection      corrosion resistance      ASTM-262A      Ni-based weld metals      Mo     
Received:  17 December 2018     
ZTFLH:  TG422.3  
Fund: Key Research Program of Chinese Academy of Sciences(No. ZDRW-CN-2017-1);Key Research & Development Program of Jiangsu Province(No. BE2018113);National Natural Science Foundation of China(No. 51474203)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.714     OR     https://www.cjmr.org/EN/Y2019/V33/I6/401

Fig.1  Schematic diagram of butt weldment and sampling location of corrosion test specimens (unit:mm)
No.NbMoCCrFeSiAlTiMnNi
0Mo2.44<0.010.02329.4210.70.130.140.340.79Bal.
2Mo2.371.800.02229.3810.00.150.140.260.91Bal.
4Mo2.433.850.02729.629.80.150.160.310.90Bal.
Table 1  Chemical composition of the weld metals (mass fraction,%)
Fig.2  OM micrograph of the as-welded metals microstructure (a) 0Mo; (b) 2Mo; (c) 4Mo
Fig.3  Precipitation in the as-weld alloys (a1, a2) 0Mo, (b1, b2) 2Mo, (c1, c2) 4Mo
Fig.4  Microstructure of the heat treated weld metals (a) 0Mo, (b) 2Mo, (c) 4Mo
Fig.5  Mass loss rate of weld metals as a function of the content of Mo
Fig.6  Corrosion surface appearance of the as-weld alloys (a) 0Mo, (b) 2Mo, (c) 4Mo
Fig.7  Morphology of the cross section of the pits in 4Mo weld metal (a) and the EDS line scanning result (b)
Fig.8  Corrosion samples surfaces of the heat treated weld metals (a1, a2) 0Mo;(b1, b2) 2Mo;(c1, c2) 4Mo
Fig.9  Element distribution in the interdendritic region of the heat-treated weld metals (a) 0Mo, (b) 2Mo, (c) 4Mo
[1] Wei X, Xu M J, Wang Q Z, et al. Effect of local texture and precipitation on the ductility dip cracking of ERNiCrFe-7A Ni-based overlay [J]. Mater. Des., 2016, 110: 90
[2] Nishimoto K, Saida K, Okauchi H. Microcracking in multipass weld metal of alloy 690 Part 1–Microcracking susceptibility in reheated weld metal [J]. Sci. Technol. Weld. Join., 2006, 11: 455
[3] MoW L. Effects of B, Ti, and Nb on the microstructure, defects and properties of Ni-base alloy weld metals [D]. Beijing: University of Chinese Academy of Sciences, 2015
[3] (莫文林. B、Ti和Nb对镍基合金焊缝金属组织、缺陷和性能的影响 [D]. 北京: 中国科学院大学, 2015)
[4] Li Y F, Wang J Q, Han E H, et al. Multi-scale study of ductility-dip cracking in nickel-based alloy dissimilar metal weld [J]. J. Mater. Sci. Technol., 2019, 35: 545
[5] Dong Y, Gao Z Y. Development of nuclear power industry and research of alloy inconel 690 in China [J]. Spec. Steel Technol., 2004, 9(3): 45
[5] (董 毅, 高志远. 我国核电事业的发展与Inconel 690合金的研制 [J]. 特钢技术, 2004, 9(3): 45)
[6] Diercks D R, Shack W J, Muscara J. Overview of steam generator tube degradation and integrity issues [J]. Nucl. Eng. Des., 1999, 194: 19
[7] Wang Z J, Zheng W J, Song Z G, et al. Effect of solution treatment on structure and mechanical properties of nickel base alloy 690 [J]. Spec. Steel, 2011, 32(4): 67
[7] (王子君, 郑文杰, 宋志刚等. 固溶处理对690镍基合金组织和力学性能的影响 [J]. 特殊钢, 2011, 32(4): 67)
[8] Kiser S D, Zhang R, Baker B A. A new welding material for improved resistance to ductility dip cracking [A]. Proceedings of the 8th International Conference on Trends in Welding Research [C]. Pine-Mountain, GA, USA: ASM, 2009
[9] McCracken S L, Alexandrov B T, Lippold J C, et al. Hot cracking study of high chromium nickel-base weld filler metal 52MSS (ERNiCrFe-13) for nuclear applications [A]. Proceedings of the ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference [C]. Bellevue, Washington, USA: American Society of Mechanical Engineers, 2010
[10] Yushchenko K, Savchenko V, Chervyakov N, et al. Comparative hot cracking evaluation of welded joints of alloy 690 using filler metals inconel 52 and 52 Mss [J]. Weld. World, 2011, 55(9-10): 28
[11] Jeng S L, Chang Y H. The influence of Nb and Mo on the microstructure and mechanical properties of Ni-Cr-Fe GTAW welds [J]. Mater. Sci. Eng., 2012, 555A: 1
[12] Mois? B. Influence of chemical composition on stainless steels mechanical properties [A]. Proceedings of the 13th WSEAS International Conference on Mathematical and Computational Methods in Science and Engineering [C]. Catania, Sicily, Italy: World Scientific and Engineering Academy and Society, 2011
[13] Liu H Z, Li X Y, He D Y. Studies on corrosion resistant property of Ni-Cr-Mo system superalloy [J]. Sciencep. Online, 2008, 1: 13
[13] (刘海璋, 李晓延, 贺定勇. 镍基合金析出相及其合金耐蚀性能的研究 [J]. 中国科技论文在线, 2008, 1: 13)
[14] Wu D J, Fan C, Liu S B, et al. Corrosion performance of laser welding on dissimilar materials Hastelloy C-276/316L [J]. Chin. J. Nonferrous Met., 2014, 24: 441
[14] (吴东江, 范 聪, 刘士博等. Hastelloy C-276/316L激光异质焊焊缝腐蚀性能 [J]. 中国有色金属学报, 2014, 24: 441)
[15] Zhang X, Li D Z, Li Y Y, et al. Effect of Nb and Mo on the microstructure, mechanical properties and ductility-dip cracking of Ni-Cr-Fe weld metals [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 928
[16] Di X J, Chen B. Solidification behaviour of a high chromium nickel base alloy weld deposited metal [J]. Sci. Technol. Weld. Join., 2015, 20: 325
[17] Du N, Tian W M, Zhao Q, et al. Pitting corrosion dynamics and mechanisms of 304 stainless steel in 3.5% NaCl solution [J]. Acta Metall. Sin., 2012, 48: 807
[17] (杜 楠, 田文明, 赵 晴等. 304不锈钢在3.5%NaCl溶液中的点蚀动力学及机理 [J]. 金属学报, 2012, 48: 807)
[18] Sun J L, Zou D, Jin J, et al. Localized corrosion resistance of three commonly-used stainless steels [J]. Chin. J. Mater. Res., 2017, 31(9): 665
[18] (孙京丽, 邹 丹, 金 晶等. 三种常用不锈钢的耐局部腐蚀性能 [J]. 材料研究学报, 2017, 31(9): 665)
[19] Zhao P. Application of molybdenum in stainless steel [J]. China Molybd. Ind., 2004, 28(5): 3
[19] (赵 朴. 钼在不锈钢中的应用 [J]. 中国钼业, 2004, 28(5): 3)
[20] Zhang C L, Xiong X H, Zheng Z J, et al. Influence of stabilization treatment on the intergranular corrosion susceptibility of super304H austenitic heat-resistant steel [J]. Chin. J. Mater. Res., 2013, 27(6): 411
[20] (张春雷, 熊夏华, 郑志军等. 稳定化处理对Super304H奥氏体耐热钢晶间腐蚀敏感性的影响 [J]. 材料研究学报, 2013, 27(6): 411)
[21] Peng Q J, Yamauchi H, Shoji T. Investigation of dendrite-boundary microchemistry in alloy 182 using auger electron spectroscopy analysis [J]. Metall. Mater. Trans., 2003, 34A: 1891
[22] Tsai W T, Yu C L, Lee J I. Effect of heat treatment on the sensitization of Alloy 182 weld [J]. Scr. Mater., 2005, 53: 505
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[3] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[4] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[5] LI Linlong, YANG Liqi, XUE Weihai, GAO Siyang, WANG Xu, DUAN Deli, LI Shu. Sliding Friction and Wear between Rare Earth Modified GCR15 Steel against Cage Materials[J]. 材料研究学报, 2023, 37(6): 408-416.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[8] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[9] ZHU Xuedong, ZHANG Shuang, ZOU Cunlei, LIU Lingen, ZHU Zhihao, WAN Peng, DONG Chuang. Optimization Design of a Bulk Metallic Glass Zr55Cu30Al10Ni5 and its Crystallization Behavior[J]. 材料研究学报, 2023, 37(4): 281-290.
[10] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[11] LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. 材料研究学报, 2023, 37(4): 264-270.
[12] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[13] QIAN Chunhua, CUI Haitao, WEN Weidong. Investigation on Thermo-mechanical Fatigue Behavior of GH4169 Alloy[J]. 材料研究学报, 2023, 37(2): 145-151.
[14] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[15] QI Yunchao, FANG Guodong, ZHOU Zhengong, LIANG Jun. In-plane Tensile Strength for Needle-punched Composites Prepared by Different Needling Processes[J]. 材料研究学报, 2023, 37(1): 21-28.
No Suggested Reading articles found!