Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (5): 394-400    DOI: 10.11901/1005.3093.2018.552
ARTICLES Current Issue | Archive | Adv Search |
Hydrothermal Synthesis and Photoluminescent Properties of YVO4: Eu3+, Bi3+ Red Phosphors
Qingmin WEI1,Xiuying LI1,Shihua XU2,Guocong LIU3,Guobao HUANG1(),Zhihui LUO1()
1. Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, China
2. College of Chemical Engineering and Resource Recycling, Wuzhou University, Wuzhou, 543000, China
3. Department of Chemical Engineering, Huizhou University, Huizhou 516007, China
Cite this article: 

Qingmin WEI,Xiuying LI,Shihua XU,Guocong LIU,Guobao HUANG,Zhihui LUO. Hydrothermal Synthesis and Photoluminescent Properties of YVO4: Eu3+, Bi3+ Red Phosphors. Chinese Journal of Materials Research, 2019, 33(5): 394-400.

Download:  HTML  PDF(4424KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Red phosphor nanoparticles YVO4:Eu3+,Bi3+ have been successfully prepared via a facile hydrothermal method with Y2O3, Eu2O3, HNO3, Bi(NO3)3·H2O, NH4VO3, NH3·H2O, HNO3, EtOH and diethylene glycol (DEG) as raw materials and polyvinyl pyrrolidone (PVP) as accessory ingredient. The as-prepared products were characterized by XRD, SEM, IR and PL. The results show that, all the samples are well crystallized and assigned to be the tetragonal crystal structure as the YVO4 phase. Their microstructure varied with the pH value of solutions. The YVO4:Eu3+, Bi3+ nanoparticles exhibit simultaneously orange (at 594 nm) and red (at 619 nm) emissions. The broad orange-red emissions can be attributed to the 5D07F1 and 5D07F2 transition of Eu3+ ion in YVO4 matrix. As the ratio of Eu3+/Bi3+ increases, the fluorescence intensities increase first and then weaken, while reach the strongest red emission at nEu3+/nBi3+=5. Besides, the pH value presents influence on the intensities of the YVO4:Eu3+, Bi3+ nanoparticles to some extent. The YVO4:Eu3+, Bi3+ nanoparticles prepared in the solution with pH = 10 exhibits the strongest red emission. Finally, the mechanism related with the Bi3+→Eu3+ energy transfer in YVO4:Eu3+, Bi3+ nanoparticles was also discussed.

Key words:  inorganic non-metallic materials      hydrothermal method      YVO4: Eu3+      Bi3+ nanoparticles      fluorescence     
Received:  12 September 2018     
ZTFLH:  TQ174  
Fund: Natural Science Foundation of Guangxi(2017GXNFBA198211);Youth Rolling Natural of Science Foundation of Guangxi(2014GXNSFBB118002);Guangxi University Science and Technology Research Project(KY2015LX301);Youth Fund Project of Yulin Normal University(2012YJQN31);Startup Program of Yulin Normal University(G20160002);University-level Scientific Research Project of Yulin Normal University(2018YJKY36)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.552     OR     https://www.cjmr.org/EN/Y2019/V33/I5/394

Fig.1  XRD patterns of YVO4:Eu3+, Bi3+
Fig.2  SEM images of the samples under different pH values (a, b) pH=5, (c, d) pH=10
Fig.3  FT-IR pattern of YVO4:Eu3+,Bi3+
Fig.4  (a) Excitation spectrum and (b) emission spectrum of YVO4:Eu3+,Bi3+
Fig.5  Schematic diagram of the energy band structure for YVO4: Eu3+,Bi3+ that illustrates the corresponding energy transfer processes
Fig.6  Effect of different Eu/Bi values on luminescent intensity for the YVO4:Eu3+,Bi3+ samples. (a) YVO4:Eu3+ and (b) YVO4: Eu3+, Bi3+
Fig.7  Effect of different Eu/Bi values on luminescent intensity for the YVO4:Eu3+,Bi3+ samples
Fig.8  Effect of different pH values on luminescent intensity for the YVO4: Eu3+, Bi3+ samples
[1] KanoT, OtomoY. Effects of impurities on the luminescence processes in YVO4: Eu [J]. Electrochem. Soc., 1969, 116: 64
[2] WangJ, XuY H. Hojamberdiev M,et al. A facile route to synthesize luminescent YVO4: Eu3+ porous nanoplates [J]. J. Non-Cryst. Solids, 2009, 355: 903
[3] LiuX L, ZhouF, GuM, et al. Fabrication of highly a-axis-oriented Gd2O3: Eu3+ thick film and its luminescence properties [J]. Opt. Mater., 2008, 31: 126
[4] HongB C, KawanoK. Syntheses of CaF2: Eu nanoparticles and the modified reducing TCRA treatment to divalent Eu ion [J]. Opt. Mater., 2008, 30: 952
[5] ChiJ Y, ChenJ S, LiuC Y, et al. Phosphor converted LEDs with omnidirectional-reflector coating [J]. Opt. Express, 2009, 17: 23530
[6] TanakaS, FujiharaS. Luminescent antireflective coatings with disordered surface nanostructures fabricated by liquid processes [J]. Langmuir, 2011, 27: 2929
[7] LevineA K, PalillaF C. A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4: Eu) for color television [J]. Appl. Phys. Lett., 1964, 5: 118
[8] NeerajS, KijimaN, CheethamA K. Novel red phosphors for solid state lighting; the system BixLn1-xVO4: Eu3+/Sm3+(Ln=Y, Gd) [J]. Solid State Commun., 2004, 131: 65
[9] TakeshitaS, IsobeT, NiikuraS. Low-temperature wet chemical synthesis and photoluminescence properties of YVO4: Bi3+, Eu3+ nano-phosphors [J]. J. Luminescence, 2008, 128: 1515
[10] HuJ Q, BandoY, GolbergD. Self-catalyst growth and optical properties of novel SnO2 fishbone-like nanoribbons [J]. Chem. Phys. Lett., 2003, 372: 758
[11] IsoY, TakeshitaS, IsobeT. Effects of annealing on the photoluminescence properties of Citrate-Capped YVO4: Bi3+, Eu3+ Nanophosphor [J]. J. Phys. Chem., 2014, 118C: 11006
[12] ChenY C, WuY C, WangD Y, et al. Controlled synthesis and luminescent properties of monodispersed PEI-modified YVO4: Bi3+, Eu3+ nanocrystals by a facile hydrothermal process [J]. J. Mater. Chem., 2012, 22: 7961
[13] ChenL, ChenK J, LinC C, et al. Combinatorial approach to the development of a single mass YVO4: Bi3+, Eu3+ phosphor with red and green dual colors for high color rendering white light-emitting diodes [J]. J. Comb. Chem., 2010, 12: 587
[14] XuW, SongH W, YanD T, et al. YVO4: Eu3+, Bi3+ UV to visible conversion nano-films used for organic photovoltaic solar cells [J]. J. Mater. Chem., 2011, 21: 12331
[15] RambabuD P, AmalnerkarB, BuddhuduB B K S. Fluorescence spectra of Eu3+-doped LnVO4 (Ln=La and Y) powder phosphors [J]. Mater. Res. Bull., 2000, 35: 929
[16] LiuG C, DongH, WeiQ M, et al. Preparation and luminescence of mesoporous LaVO4: Eu3+ [J]. Chinese Journal of Materials Research, 2014, 28(1): 1
[16] 刘国聪, 董 辉, 韦庆敏等. 介孔LaVO4: Eu3+的制备和荧光性能 [J]. 材料研究学报, 2014, 28: 1
[17] JvuD B R. Optical Absorption intensities of rare-earth ions [J]. Phys. Rev., 1962. 127: 750
[18] PanigrahiB S, PeterS, ViswanathanK S, et al. Fluorescence enhancement of Tb3+ in Tb-aromatic acid complexes: correlation of synergistic enhancement with the structure of the ligand [J]. Spectrochim. Acta, 1995, 51A: 2289
[19] Nu?ezN, SabekJ, García-SevillanoJ, et al. Solvent-controlled synthesis and luminescence properties of uniform Eu: YVO4 Nanophosphors with different morphologies [J]. Eur. J. Inorg. Chem., 2013, 8: 1301
[20] HuangC K, ChenY C, HungW B, et al. Enhanced light harvesting of Si solar cells via luminescent down-shifting using YVO4: Bi3+, Eu3+ nanophosphors [J]. Prog. Photovolt., 2013, 21: 1507
[21] XuX R, SuM Z. Luminescence and Luminescence Materials [M]. Chemical Industry Press, 2004: 178
[21] 徐叙瑢, 苏勉曾(发光学与发光材料 [M]. 化学工业出版社, 2004: 178)
[22] DattaR K. Bismuth in yttrium vanadate and yttrium europium vanadate phosphors [J]. J. Electrochem. Soc., 1967, 114: 1057
[23] LiuG C, DuanX C, LiH B, et al. Novel polyhedron-like t-LaVO4: Dy3+ nanocrystals: Hydrothermal synthesis and photoluminescence properties [J]. J. Cryst. Growth, 2008, 310: 4689
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
No Suggested Reading articles found!