Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (12): 936-945    DOI: 10.11901/1005.3093.2018.181
ARTICLES Current Issue | Archive | Adv Search |
Effect of Si on Solidification Behavior and Mechanical Property of Superalloy K4169
Xiaoliang LI1,2, Bo CHEN1(), Weiwei XING1, Leilei DING1, Yingche MA1, Kui LIU1
1 .Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

Xiaoliang LI, Bo CHEN, Weiwei XING, Leilei DING, Yingche MA, Kui LIU. Effect of Si on Solidification Behavior and Mechanical Property of Superalloy K4169. Chinese Journal of Materials Research, 2018, 32(12): 936-945.

Download:  HTML  PDF(11620KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The segregation- and precipitation-behavior of superalloy K4169 with 0.03~0.65% Si (atomic fraction) in the temperature range of 1150℃~1360℃ via thermo-calc simulation and isothermal solidification experiment. Results show that not only the temperature of solidus-liquid will decrease but also the solid-liquid two-phase region will enlarge with the existence of Si. The liquidus temperature of the alloy decreases from 1354℃ to 1343℃ and the solidus temperature drops from 1241℃ to 1212℃ with the increasing of Si content from 0.03% to 0.64%. With the increasing of Si content, the enrichment of Nb and Mo are promoted in the residual liquid phase, resulting in the depletion of Cr and Fe, while the content of Laves phase increases along with the segregation. Different morphologies are delivered of Laves phase due to the different Si contents in the alloy. The reticular Laves phase was obtained with 0.03% and 0.23% Si, while large blocky laves phase was observed with 0.42% and 0.65% Si. Si has almost no effect on the morphology and precipitation temperature of MC carbide. Si not only affects the room temperature performance of the alloy, but also the elevated temperature performance of the alloy. When the Si content increased from 0.03% to 0.65%, both of the creep-rupture life and elongation are decreased obviously. Base on these research results, as an overall consideration, it is rational to control the Si content for K4169 alloy.

Key words:  metallic materials      K4169 alloy      isothermal solidification      elemental segregation      Laves phase     
Received:  08 March 2018     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.181     OR     https://www.cjmr.org/EN/Y2018/V32/I12/936

C Cr Ni Mo Nb Al Ti B S N Fe
0.056 19.56 53.45 3.08 5.05 0.55 0.97 0.0029 0.004 0.0002 Bal.
Table 1  Chemical composition of alloy K4169 (%, mass fraction)
Fig.1  Calculated solidification sequence of K4169 superalloy with different content of Si predicted by Thermos-Calc (a) 0.03%Si, (b) 0.65%Si
Fig.2  OM of K4169 alloy with different content of Si and different isothermal temperature
Fig.3  Comparison of fraction of residual liquid between (a) isothermal solidification results and (b) calculation
Thermo-Calc
model
Scheil model Isothermal solidification
experiment
0.03Si liquidus 1354 1354 1360~1350
solidus 1208 1111 1240
MC 1270 1268 1290
Laves - 1143 -
0.23Si liquidus 1352 1352 1360~1350
solidus 1210 1116 1230
MC 1270 1269 1290
Laves - 1145 -
0.42Si liquidus 1348 1348 1350~1340
solidus 1200 1120 1220
MC 1270 1270 1290
Laves 1050 1157 1180
0.65Si liquidus 1343 1343 1350~1340
solidus 1188 1125 1210
MC 1270 1270 1290
Laves 1110 1167 1190
Table 2  Liquidus,solidus and the main phase transformation temperature of K4169 alloys with different Si contents obtained by isothermal solidification experiment and Thermo-Calc simulation (℃)
Alloy Ni Fe Cr Si Al Mo Nb Ti
0.03Si 1.06 1.59 1.83 0.53 1.65 0.91 0.26 0.31
0.23Si 1.18 1.79 1.92 0.25 1.44 0.68 0.22 0.31
0.42Si 1.27 2.08 2.07 0.18 2.13 0.52 0.18 0.30
0.65Si 1.29 2.12 2.15 0.16 2.12 0.46 0.16 0.37
Table 3  Element segregation analysis of the quenched samples with different isothermal temperatures between solid and liquid phases for different alloys (%, mass fraction)
Fig.4  Eutectic Laves phase precipitated of the 0.03Si alloy at the quenching temperature 1280℃ (a) SEM micrograph; (b) morphology of TEM; (c) selected-area diffraction corresponding and EDS spectrum corresponding (b)
Fig.5  Laves morphologies of samples quenched at different temperatures (a) 0.03%Si at 1120℃, (b) 0.23%Si at 1120℃, (c) 0.42%Si at 1180℃, (d) 0.65%Si at 1190℃
Fig.6  Mass fraction of Laves and MC as a function of Si content at different temperature: (a) Laves, (b) MC
Fig.7  Microstructure of as-cast alloy with different Si (a) 0.03%Si, (b) 0.23%Si, (c) 0.42%Si, (d) 0.65%Si
Fig.8  Effect of Si content on the room temperature yield strength,ultimate tensile strength, elongation and reduction of area (a),and effect of different content of Si on the stress rupture life under 650℃ with 620 MPa (b)
Fig.9  Full view morphologies of fracture surface in tensile test at room temperature with different content of Si: (a) 0.03%Si, (b) 0.23%Si, (c) 0.42%Si and (d) 0.65%Si
Fig.10  Longitudinal section of creep-rupture fracture surface morphologies of samples with the Si content of (a) 0.03%Si, (b) 0.23%Si, (c) 0.42%Si and (d) 0.65%Si
[1] Tang X, Cao L M, Gai Q D, et al.Investment casting technology and heat treatment process of K4169 superalloy integral nozzle ring[J]. Aerospace Mater. Technol., 2007, 37(6): 82(汤鑫, 曹腊梅, 盖其东等. K4169合金整体导向环精铸技术及热处理工艺研究[J]. 宇航材料工艺, 2007, 37(6): 82)
[2] Ji G S, Yang Y L, Qou S Z.Investigation of high-temperature phase transformation of nickel-base superalloy K4169[J]. J. Lanzhou Univ. Technol., 2016, 42(3): 14(季根顺, 杨彦莉, 寇生中. 镍基高温合金K4169的高温相变研究[J]. 兰州理工大学学报, 2016, 42(3): 14)
[3] Paulonis D F, Schirra J J.Alloy 718 at Pratt & Whitney-Historical Perspective and Future Challenges [A]. Loria E A ed. Superalloys. TMS, 2001: 13
[4] Mills W J.The effect of heat treatment on the room temperature and elevated temperature fracture toughness response of alloy 718[J]. J. Eng. Mater. Technol., 1980, 102: 118
[5] Zhang H Y, Zhang S H, Cheng M, et al.Deformation characteristics of δ phase in the delta-processed Inconel 718 alloy[J]. Mater. Charact., 2010, 61: 49
[6] Whitmore L, Ahmadi M R, Guetaz L.The microstructure of heat-treated nickel-based superalloy 718Plus[J]. Mater. Sci. Eng., 2014, 610A: 39
[7] Bieber C G, Decker R F.The melting of malleable nickel and nickel alloys[J]. Trans. Metall. Soc. AIME, 1961, 221: 629-636
[8] Holt R T, Wallace W.Impurities and trace elements in nickel-base superalloys[J]. Int. Meter. Rev., 1976, 21: 1
[9] Hu Z Q, Sun W R, Guo S R, et al.Effect of P, S, and Si on the solidification, segregation, microstructure and mechanical properties in Fe-Ni base superalloys[J]. Acta Metall. Sin., 1996, 9: 443
[10] Wei X Y, Yang Q B.Effect of Mn and Si on notch sensitivity of an Fe-Ni base superalloy[J]. Acta Metall. Sin., 1984, 20: A261(魏翔云, 杨奇斌. Mn和Si对一种Fe-Ni基高温合金持久缺口敏感性的影响[J]. 金属学报, 1984, 20: A261)
[11] Xu Z F, Jiang L, Dong J S, et al.The effect of silicon on precipitation and decomposition behaviors of M6C carbide in a Ni-Mo-Cr superalloy[J]. J. Alloy. Compd., 2015, 620: 197
[12] Meetham G W.Trace elements in superalloys-an overview[J]. Metals. Technol., 1984, 11: 414
[13] Douglass D L, Armijo J S.The effect of silicon and manganese on the oxidation mechanism of Ni-20 Cr[J]. Oxidat. Metals, 1970, 2: 207
[14] Guo J T.Effects of several minor elements on superalloys and their mechanism[J]. Chin. J. Nonferr. Meter., 2011, 21: 465(郭建亭. 几种微量元素在高温合金中的作用与机理[J]. 中国有色金属学报, 2011, 21: 465)
[15] Liu Y, Deng B, Zhong Z Y, et al.Distribution and effect on precipitation of Si in GH907 superalloy[J]. Iron Steel, 1997, 32(6): 56(刘瑛, 邓波, 仲增墉等. 硅在GH907低膨胀高温合金中的分布及对析出相的影响[J]. 钢铁, 1997, 32(6): 56)
[16] Sun W R, Guo S R, Lu D Z, et al.Effect of Si on solidification and segregation in inconel 718 alloy[J]. J. Aeronaut. Mater., 1996, 16(2): 7(孙文儒, 郭守仁, 卢德忠等. Si对IN718合金凝固过程及元素偏析的影响[J]. 航空材料学报, 1996, 16(2): 7)
[17] Cao G X, Zhang M C, Dong J X, et al.Effects of Nb content variations on precipitates evolution of GH4169 ingots during their solidification and homogenization processes[J]. Rare Metal Mater. Eng., 2014, 43: 103(曹国鑫, 张麦仓, 董建新等. Nb含量对GH4169合金钢锭凝固及均匀化过程相演化规律的影响[J]. 稀有金属材料与工程, 2014, 43: 103)
[18] Sun W R, Guo S R, Guo J T, et al.The common strengthening effect of phosphorus, sulfur, and silicon in lower contents and a problem of a net superalloy [A]. Pollock T M, Kissinger R D, Bowman R R eds. Superalloys. TMS, 2000: 467
[19] McLean M, Strang A. Effects of trace elements on mechanical properties of superalloys[J]. Metals Technol., 1984, 11: 454
[20] Wang A C, Li Y Y, Fan C G, et al.Effect of P and Si(Mn) on the solidification segregation in an iron-based superalloy[J]. Scripta Metall. Mater., 1994, 31: 1695
[21] Shi Z X, Dong J X, Zhang M C, et al.Solidification characteristics and segregation behavior of Ni-based superalloy K418 auto turbochargre turbine[J]. J. Alloys Compd., 2013, 571: 168
[22] Gizan X R, Liu E Z, Zheng Z, et al.Solidification behavior and segregation of Re-containing cast Ni-base superalloy with different Cr content[J]. J. Mater. Sci. Technol., 2011, 27: 113
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!