Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (5): 388-394    DOI: 10.11901/1005.3093.2017.193
ARTICLES Current Issue | Archive | Adv Search |
Effect of Quenching Temperature on Cryogenic Mechanical Properties of a 7Ni Steel
Hongwei CAO1,2, Xinghong LUO2(), Shi LIU2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences,Shenyang 110016, China
Cite this article: 

Hongwei CAO, Xinghong LUO, Shi LIU. Effect of Quenching Temperature on Cryogenic Mechanical Properties of a 7Ni Steel. Chinese Journal of Materials Research, 2018, 32(5): 388-394.

Download:  HTML  PDF(4788KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of quenching temperature on cryogenic strength and toughness of a 7Ni steel was investigated. The microstructure and volume fraction of reversed austenite were characterized by means of OM, SEM, TEM, XRD. Results show that cryogenic toughness of the steel sharply decreased when quenching temperature increased from 830℃ to 930℃. And cryogenic tensile strength as well as yield strength were obviously decreased with increasing quenching temperature. What's more, elongation also decreased at higher quenching temperature, and has a consistent variation tendency with cryogenic strength. Grains of prior austenite and martensite packets were fine in the steel quenched at 830℃, but grains and packets grew significantly at higher quenching temperature. Cryogenic strength and toughness decreased with growth of grain sizes and packet width. Coarsen microstructure has a adverse effect on cryogenic strength and toughness. The amount of reversed austenite showed downtrend basically by increasing quenching temperature. The steel quenched at 830℃ has a maximum of reversed austenite amount and impact energy.

Key words:  metallic materials      7Ni steel      quenching temperature      cryogenic mechanical properties      microstructure      reversed austenite     
Received:  17 March 2017     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.193     OR     https://www.cjmr.org/EN/Y2018/V32/I5/388

C Si Mn P S Ni Fe
0.04 0.05 0.83 0.009 <0.005 7.49 Bal.
Table 1  Chemical composition of experimental steel (mass fraction, %)
Fig.1  Effect of quenching temperature on cryogenic tensile properties of samples
Fig.2  Effect of quenching temperature on cryogenic toughness of samples
Fig.3  Impact fracture morphology of samples quenched at different temperature, (a) 830℃, (b) 880℃, (c) 930℃
Fig.4  Prior austenite grains of samples quenched at different temperatures, (a) 830℃, (b) 880℃, (c) 930℃
Fig.5  Microstructure of samples quenched at different temperatures, (a) 830℃, (b) 880℃, (c) 930℃
Fig.6  Effect of quenching temperature on grain size and packet width
Fig.7  Effect of quenching temperature on volume fraction of reversed austenite
Fig.8  TEM images and SAED patterns of samples quenched at different temperatures, (a) 830℃, (b) 880℃, (c) 930℃
[1] Liu J L.Analyses of development status of Chinese LNG[J]. China Chemical Trade, 2015, 34: 42(刘佳丽. 中国LNG发展现状分析[J]. 中国化工贸易, 2015,34:42)
[2] F. Shaikh, Q. Ji, Y. Fan.Assessing the stability of the LNG supply in the Asia Pacific region[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 376
[3] Maki Yamashita, David Knowels, Masahiko Mitsumoto, et al.Development of 7%Ni-TMCP steel plate for LNG storage tanks [A], Proceedings of the Asme Pressure Vessels and Piping Conference[C]. New York, 2012
[4] Zhu X Y, Liu D S.Microstructure and mechanical properties of a low carbon 7.7%Ni steel subjected to intercritical quenching[J]. Iron and Steel, 2013, 48(11):72(朱绪祥, 刘东升. 低C含7.7%Ni低温钢经两相区淬火后的组织性能[J]. 钢铁,2013,48(11):72)
[5] Yang Y H, Cai Q W, Wu H B, et al.Formation of reversed austenite and its effect on cryogenic toughness of 9Ni steel during two phase region heat treatment[J]. Acta Metallurgica Sinica, 2009, 45(3): 270(杨跃辉, 蔡庆伍, 武会宾等. 两相区热处理中逆转变奥氏体的形成规律及其对9Ni钢低温韧性的影响[J]. 金属学报, 2009, 45(3): 270)
[6] J. I. Kim, C. K. Syn, J. W. Morris.Microstructural sources of toughness in QLT-Treated 5.5Ni cryogenic steel[J]. Metallurgical Transactions A, 1983, 14(1):93
[7] Lu J, Zeng X Q, Ding W J.The hall-petch relationship[J]. Light Metals, 2008, 8:59(路君, 曾小勤, 丁文江. 晶粒度与合金强度关系[J]. 轻金属, 2008, 8: 59)
[8] Yong Q L.The second phase of steel [M]. Beijing: Metallurgical Industry Press, 2006(雍岐龙. 钢铁材料中的第二相 [M]. 北京:冶金工业出版社, 2006)
[9] T. Swarr, G. Krauss.The effect of structure on the deformation of as-quenched and tempered martensite in an Fe-0.2 pct C alloy[J]. Metallurgical Transactions A, 1976, 7(1): 41
[10] Liang Y, Xiang S, Liang Y L, et al.Effect of prior austenite grain size on microstructure and toughness of pearlitic steel[J]. Materials Review, 2017, 31(1): 77(梁宇, 向嵩, 梁益龙等. 原奥氏体晶粒尺寸对珠光体钢组织及韧性的影响[J]. 材料导报, 2017, 31(1): 77)
[11] C. K. Syn, J. W. Morris, S. Jin.Cryogenic fracture toughness of 9Ni steel enhanced through grain refinement[J]. Metallurgical Transactions A, 1976, 7(12): 1827
[12] M. J. Roberts.Effect of transformation substructure on the strength and toughness of Fe-Mn alloys[J]. Metallurgical Transactions, 1970, 1(12): 3287
[13] Wang C F, Wang M Q, Shi J, et al.Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel[J]. Journal of Materials Science & Technology, 2007, 23(5): 659
[14] Zhang K, Tang D, Wu H B.Effect of reversed austenite on impact toughness of 9Ni steel at low temperature[J]. Material & Heat Treatment, 2012, 41(8): 177(张坤, 唐荻, 武会宾. 逆转变奥氏体对9Ni钢低温冲击韧度的影响[J]. 材料热处理技术, 2012, 41(8): 177)
[15] Hu J, Du L X, Sun G S, et al.The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel[J]. Scripta Materialia, 2015, 104: 87
[16] Zhang F T, Wang J Y, Guo Y Y.Reversed austenite and cryogenic toughness of 9Ni steel[J]. Acta Metallurgica Sinica, 1984, 20(6): 405(张弗天, 王景韫, 郭蕴宜. Ni9钢中的回转奥氏体与低温韧性[J]. 金属学报, 1984, 20(6): 405)
[17] Yang Y H, Zhang X J, Yuan S Q, et al.Effect of quenching microstructure on the formation of reversed austenite in 9Ni steel[J]. Materials Science Forum, 2014, 788: 277
[18] Y. K. Lee, H. C. Shin, Y. C. Jang, et al.Effect of isothermal transformation temperature on amount of retained austenite and its thermal stability in a bainitic Fe-3%Si-0.45%C-X steel[J]. Scripta Materialia, 2002, 47(12): 805
[19] Li Y M, Sun X J, Yong Q L, et al.Effect of tempering temperature on microstructure and mechanical properties of 5.5Ni cryogenic steel[J]. Chinese Journal of Materials Research, 2015, 29(11): 860(李员妹, 孙新军, 雍岐龙等. 回火温度对5.5Ni低温钢组织和力学性能的影响[J]. 材料研究学报, 2015, 29(11): 860)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!