Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (4): 309-314    DOI: 10.11901/1005.3093.2017.527
ARTICLES Current Issue | Archive | Adv Search |
Effect of Heat Input on Low-temperature Flexibility of Weld Seams of a Hull Steel via Gas-shielded Welding with Filler of Marine High Strength Flux-cored Wire
Yayun ZHANG1,2, Jinshan WEI2, Tongbang AN2, Yusong XU1(), Chengyong MA2
1 College of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
2 Welding Research Institute of Iron and Steel Research Institute, Beijing 100081, China
Cite this article: 

Yayun ZHANG, Jinshan WEI, Tongbang AN, Yusong XU, Chengyong MA. Effect of Heat Input on Low-temperature Flexibility of Weld Seams of a Hull Steel via Gas-shielded Welding with Filler of Marine High Strength Flux-cored Wire. Chinese Journal of Materials Research, 2018, 32(4): 309-314.

Download:  HTML  PDF(4853KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Plates of a hull steel were weld via CO2 gas-shielded arc welding with marine high strength flux-cored wire as filler and by three different heat inputs i.e. 8 kJ/cm,14 kJ/cm and 20 kJ/cm respectively, while the effect of heat input on the microstructure and low-temperature flexibility of the weld seams was investigated by means of optical microscopy, scanning electron microscopy, transmission electron microscopy and materials-electron backscatter diffraction. Results show that the microstructure of the weld metal consists of mainly acicular ferrite, ferrite side-plate and a small amount of residual austenite for three different heat inputs. As the heat input increases the ferrite changes from acicular to lath, in which the acicular ferrite content decreases, side-plate ferrite increases and the residual austenite between them also changes from film-like to block. In addition, with the increasing heat input, inclusions with diameter below 1 μm in the deposited metal decrease, while the total amount of inclusions increases, and the large angle grain boundaries between the strips decrease. Consequently, the low-temperature flexibility of the weld seam decreases, and the fracture surface also transformed from dimple- and quasi cleavage-like to cleavage-like.

Key words:  metallic materials      flux-cored wire      heat input      microstructure      inclusion      low-temperature flexibility     
Received:  06 September 2017     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.527     OR     https://www.cjmr.org/EN/Y2018/V32/I4/309

Heat input
/kJ·cm-1
Current
/A
Voltage
/V
Speed
/cm·min-1
Gas flow
/L·min-1
8 150 27 30 22
14 240 27 28 22
20 280 30 25 22
Table 1  Welding parameters
Fig.1  Groove diagram (unit: mm)
Heat input/kJ·cm-1 C Si Mn Ni Cr Nb Cu Ti
8 0.056 0.35 1.20 1.13 0.30 0.017 0.20 0.058
14 0.044 0.30 1.14 1.10 0.22 0.018 0.24 0.052
20 0.039 0.30 1.11 1.01 0.20 0.016 0.25 0.059
Table 2  Chemical composition of deposited metal under different heat input (mass fraction, %)
Fig.2  OM images of weld seam with three kinds of heat input (a) 8 kJ/cm, (b) 14 kJ/cm, (c) 20 kJ/cm
Fig.3  TEM images of three kinds of heat input welds (a) 8 kJ/cm, (b) 14 kJ/cm, (c) 20 kJ/cm
Fig.4  Bulk morphology and diffraction pattern of retained austenite under 20 kJ/cm heat input (a) dark field phase, (b) bright field phase, (c) diffraction pattern
Fig.5  TEM diagram of inclusions
Fig.6  Dimension distribution of inclusions (a) 8 kJ/cm, (b) 14 kJ/cm, (c) 20 kJ/cm
Heat input
/kJ·cm-1
Number
/104·mm-2
Average size
/μm
Proportion of
inclusions/%
8 2.44 1.04 0.053
14 2.19 1.16 0.060
20 1.44 1.49 0.064
Table 3  Statistics of inclusions
Fig.7  Relation between heat input and grain boundary misorientation distribution
Heat
input
/kJ·cm-1
Tensile
strength/MPa
Yield strength
/MPa
Elongation
/%
Section
shrinkage
/%
8 668 602 26.5 70
14 624 562 23.5 68
20 609 505 21.5 66
Table 4  Effect of heat input on strength
Fig.8  Effect of heat input on the toughness
Fig.9  Fracture surface diagram of weld (a) 8 kJ/cm, (b) 14 kJ/cm, (c) 20 kJ/cm
[1] Liu P C, Zheng Z, Fu B Q.SF-36E flux cored wire and GY945 solid wire test [A]. The 9th National Welding Symposium[C]. Harbin, 1999(刘培晟, 郑赞, 傅炳起. SF-36E药芯焊丝和GY945实芯焊丝的比较试验研究 [A]. 第九次全国焊接会议论文集[C]. 哈尔滨,1999)
[2] Li L S, Luan J Y, Sun X H, et al.Analysis of development of welding materials in China oen[J], China Electrical Equipment Industry, 2010, (1): 10(李连胜, 栾敬岳, 孙晓红等. 我国焊接材料发展状况浅析[J], 电器工业, 2010, (1): 10)
[3] Song F Y, Li Y M, Wang P, et al.Effects of heat input on the microstructure and impact toughness of a new flux cored wire deposited metal[J]. Acta Metall Sin, 2016, 52(7): 890(宋峰雨, 李艳梅, 王平等. 热输入量对一种新型药芯焊丝熔敷金属组织及冲击韧性的影响[J]. 金属学报, 2016, 52(7): 890)
[4] Jorge J C F, Souza L F G, Rebello J M A. The effect of chromium on the microstructure/toughness relationship of C-Mn weld metal deposits[J]. Mater. Charact, 2001, 47(3-4): 195
[5] Zhang D Q.Study on formation mechanism of acicular ferrite in weld metal of microalloyed steel[D]. Tianjin: Tianjin University, 2000(张德勤. 微合金钢焊缝金属中针状铁素体形成机理的研究[D]. 天津: 天津大学, 2000)
[6] Zhang W Y.Welding Metallurgy[M]. Beijing: Metallurgy Machinery Industry Press, 2004)(张文钺. 焊接冶金学[M]. 北京: 机械工业出版社, 2004)
[7] Bhadeshia H K D H, Edmonds D V. The bainite transformation in a silicon steel[J]. Metall. Mater. Trans. A, 1979, 10(7): 895
[8] Biss V, Cryderman R L.Martensite and retained austenite in hot-rolled, low-carbon bainitic steels[J]. Metall. Mater. Trans. B, 1971, 2(8): 2267
[9] Huang A G, Yu S F, Xie M L, et al.Microstructure of acicular ferrite in weld of low alloy steel[J]. Trans China Weld Inst, 2008, 29(3): 45(黄安国, 余圣甫, 谢明立等. 低合金钢焊缝的针状铁素体微观组织[J]. 焊接学报, 2008, 29(3):45)
[10] Ricks R A, Howell P R, Barritte G S.The nature of acicular ferrite in HSLA steel weld metals[J]. J. Mater. Sci., 1982, 17(3): 732
[11] An T B, Shan J G, Wei J S, et al.Influence of heat input on microstructure and properties of steel joint for 1000MPa engineering machinery[J]. Chin J Mech Eng, 2014, 50(22): 42(安同邦, 单际国, 魏金山等. 热输入对1000 MPa级海洋工程用钢接头组织性能的影响[J]. 机械工程学报, 2014, 50(22): 42)
[12] Xiao X M, Peng Y, Ma C Y, et al, Influence of shielding gas on microstructure and toughness of 440 MPa HSLA steel with GMAW[J]. Trans China Weld Inst, 2013, 34(7): 101(肖晓明, 彭云, 马成勇等. 保护气体对440MPa HSLA钢GMAW焊缝组织及韧性的影响[J]. 焊接学报, 2013, 34(7): 101)
[13] Lan L Y, Qiu C L, Zhao D W, et al.Microstructure characteristics and toughness of different sub regions in welding heat affected zone of low carbon bainitic steel[J]. Acta Metall Sin., 2011, 47(8): 1046(兰亮云, 邱春林, 赵德文等. 低碳贝氏体钢焊接热影响区中不同亚区的组织特征与韧性[J]. 金属学报, 2011, 47(8): 1046)
[14] Cui Y X, Wang C L.Fracture Analysis of Metal [M]. Harbin: Harbin Institute of Technology press, 1998(崔约贤, 王长利. 金属断口分析[M]. 哈尔滨: 哈尔滨工业大学出版社, 1998)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!