Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (1): 73-80    DOI: 10.11901/1005.3093.2016.797
ARTICLES Current Issue | Archive | Adv Search |
Effect of Extrusion Rate on Microstructure and Mechanical Property of Copper Alloy Prepared by Rheological Squeeze Casting
Zebang CHEN, Han XIAO(), Naiyong LI, Rongfeng ZHOU, Dehong LU, Rong ZHOU
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

Zebang CHEN, Han XIAO, Naiyong LI, Rongfeng ZHOU, Dehong LU, Rong ZHOU. Effect of Extrusion Rate on Microstructure and Mechanical Property of Copper Alloy Prepared by Rheological Squeeze Casting. Chinese Journal of Materials Research, 2018, 32(1): 73-80.

Download:  HTML  PDF(11540KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Strain induced melt activation (SIMA) based on cold rolling and remelting method is used to prepare the rheological slurry, then with which axle bush parts of Cu alloy ZCuSn10P1 were prepared by rheological squeeze casting process. Whilst the effect of extrusion rate on the microstructure and mechanical property of the prepared copper alloy, and the evolution of solid and liquid phases during the forming process were studied. The results indicate that with the forming specific pressure of 250 MPa and extrusion rate of 15 mm/s, the microstructure of the prepared Cu-alloy ZCuSn10P1 is uniform and the synergy liquidity of solid-liquid is considerable, thereby, the tensile strength of the Cu-alloy reached a peak value of 371.1 MPa and elongation of 8.43%, which are 57.3% and 78.7% respectively higher than those of the Cu-alloy prepared by liquid-phase extrusion casting process. Furthermore, it is noted that liquid-phase segregation phenomenon along not only the vertical direction, but also the horizontal direction could be observed in the microstructure of the prepared axle bush parts by the rheological squeeze casting process.

Key words:  metallic materials      copper alloy      rheological extrusion      microstructure evolution      semi-solid     
Received:  20 January 2017     
ZTFLH:  TG146.1  
  TG249.9  
Fund: Supported by National Natural Science Foundation of China (No. 51665024), Applied Basic Research General Program of Yunnan Province (No. 2014FB131) and Scientific Research Key Project of Yunnan Provincial Education Department (No. 2015Z031)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.797     OR     https://www.cjmr.org/EN/Y2018/V32/I1/73

Condition Temperature
/℃
Time
/min
Pre-deformation
/%
Forming specific pressure/MPa Extrusion rate
/mms-1
1 900 25 14 250 15
2 900 25 14 250 13
3 900 25 14 250 11
Table 1  Process parameters of the rheological extrusion forming
Fig.1  Squeeze casting and sampling point (a) squeeze casting; (b) sampling point (unit: mm)
Fig.2  The size of tensile specimen (unit: mm)
Fig.3  Microstructure of liquid extrusion casting
Fig.4  Microstructure of semi-solid ZCuSn10P1 copper alloy remelted at 900℃ for 25 min with the pre-deformation of 14%
Fig.5  Microstructures of rheological squeeze casted copper alloy at different extrusion rates (a) 11 mm/s; (b) 13 mm/s; (c) 15 mm/s
Fig.6  Liquid fraction, mean particle size and shape factor of rheological squeeze casting part. (a) liquid fraction on the transverse direction; (b) liquid fraction on the longitudinal direction; (c) mean particle size and shape factor
Fig.7  Appearance and microstructure of copper alloy shaft sleeve at extrusion rate 9 mm/s (a) appearance; (b, c) cold shut
Fig.8  Tensile properties of rheological squeeze casting part
Fig.9  Tensile fracture morphology of liquid extrusion casting part (a) intergranular fracture; (b) transgranular fracture; (c) cleavage plane
Fig.10  Fractographies of rheological squeeze casting (a, b) hole; (c) toughening nest
[1] Flemings M C.Behavior of metal alloys in the semisolid state[J]. Metall. Trans., 1991, 22A: 957
[2] Spencer D B, Mehrabila R, Flemings M C.Rheological behavior of Sn-15 pct Pb in the crystallization range[J]. Metall. Trans., 1972, 3: 1925
[3] Kirkwood D H.Semi-solid metal processing[J]. Int. Mater. Rev., 1994, 39: 173
[4] Esgandari B A, Nami B, Shahmiri M, et al.Effect of Mg and semi solid processing on microstructure and impression creep properties of A356 alloy[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2518
[5] Lashkari O, Ghomashchi R.The implication of rheology in semi-solid metal processes: an overview[J]. J. Mater. Process. Technol., 2007, 182: 229
[6] Zhao D Z, Lu G M, Cui J Z.Semi-solid thixo-extrusion of AlSi7MgBe alloy[J]. Chin. J. Mater. Res., 2009, 23: 127(赵大志, 路贵民, 崔建忠. AlSi7MgBe合金的半固态挤压成形[J]. 材料研究学报, 2009, 23: 127)
[7] Wang L P, Jiang W Y, Chen T, et al.Spheroidal microstructure formation and thixoforming of AM60B magnesium alloy prepared by SIMA process[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: s435
[8] Wang S C, Qi W J, Zheng K H, et al.Microstructure and mechanical properties of semisolid forged ZL101 aluminum alloy wheel[J]. Trans. Mater. Heat Treatment, 2013, 34(5): 116(王顺成, 戚文军, 郑开宏等. 半固态模锻ZL101铝合金车轮的组织与力学性能[J]. 材料热处理学报, 2013, 34(5): 116)
[9] Tan J B, Hou W J.Heat treatment process of AlSi9Mg alloy produced by rheo-diecasting[J]. Trans. Mater. Heat Treatment, 2010, 31(12): 43(谭建波, 侯文杰. 流变压铸AlSi9Mg合金的热处理工艺[J]. 材料热处理学报, 2010, 31(12): 43)
[10] Fang X G, Wu S S, Zhao L, et al.Microstructure of Mg-6Zn-3RE-1.4Y alloy produced by rheo-squeeze casting[J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 39(方晓刚, 吴树森, 赵立等. 流变挤压铸造Mg-6Zn-3RE-1. 4Y镁合金的组织[J]. 特种铸造及有色合金, 2015, 35: 39)
[11] Ma Y Y, Yang B C, Wang Y B, et al.Rheo-die casting of AZ91D magnesium alloy by twin-screw stirring[J]. Chin. J. Rare Met., 2013, 37: 27(马跃宇, 杨必成, 王亚宝等. 双螺旋流变压铸AZ91D镁合金的研究[J]. 稀有金属, 2013, 37: 27)
[12] Hosseini V A, Aashuri H, Kokabi A H.Characterization of newly developed semisolid stir welding method for AZ91 magnesium alloy by using Mg-25%Zn interlayer[J]. Mater. Sci. Eng., 2013, 565A: 165
[13] Birol Y.Evolution of globular microstructures during processing of aluminum slurries[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 1
[14] Wang J, Xiao H, Wu L B, et al.Study of rolling-remelting SIMA process for preparing the semi-solid billet of ZCuSn10 alloy[J]. Acta Metall. Sin., 2014, 50: 567(王佳, 肖寒, 吴龙彪等. 轧制-重熔SIMA法制备ZCuSn10合金半固态坯料[J]. 金属学报, 2014, 50: 567)
[15] Wu L B, Xiao H, Wang J, et al.Effect of remelting process on microstructure of semi-solid ZCuSn10 copper alloy fabricated by strain induced melt activated method[J]. Chinese J. Nonferrous Met., 2013, 23: 3302(吴龙彪, 肖寒, 王佳等. 重熔工艺对应变诱导熔化激活法制备ZCuSn10铜合金半固态组织的影响[J]. 中国有色金属学报, 2013, 23: 3302)
[16] Joly P A, Mehrabian R.The rheology of a partially solid alloy[J]. J. Mater. Sci., 1976, 11: 1393
[17] Kirkwood D H.Semisolid metal processing[J]. Int. Mater. Rev., 1994, 39: 173
[18] Suéry M, Zavaliangos A.Key problems in rheology of semi-solid alloys [A]. Proceedings of the 6th International Conference on Semi-solid Processing of Alloy and Composites[C]. Turin, Italy, 2000: 129
[19] Kumar P, Martin C L, Brown S.Shear rate thickening flow behavior of semisolid slurries[J]. Metall. Trans., 1993, 24A: 1107
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!