Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (7): 537-546    DOI: 10.11901/1005.3093.2016.396
ARTICLES Current Issue | Archive | Adv Search |
Impact Wear Behavior of a Novel Light-weight Austenitic Wear-resistant Steel
Shiguang PENG1, Renbo SONG1, Changhong CAI1, Zhongzheng PEI1, Ke GUO2,3, Zhonghong WANG3, Jingjun GAO4
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 117022, China
3 Angang Group Mining Engineering Corporation, Anshan 114004, China
4 Anshan Iron and Steel Group Mining Company, Anshan 114001, China
Cite this article: 

Shiguang PENG, Renbo SONG, Changhong CAI, Zhongzheng PEI, Ke GUO, Zhonghong WANG, Jingjun GAO. Impact Wear Behavior of a Novel Light-weight Austenitic Wear-resistant Steel. Chinese Journal of Materials Research, 2017, 31(7): 537-546.

Download:  HTML  PDF(8749KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The wear resistance and wear mechanism of a novel light-weight Fe-24Mn-7Al-1.0C austenitic steel after water quenching (Q) and water quenching-aging (Q-A) treatments were studied by comparing with the Mn13Cr2. The impact wear tests were carried out by using MLD-10 abrasive wear testing tester under low impact energy condition (0.5 J). Results show that the wear resistance of Fe-24Mn-7Al-1.0C steel is 1.14 times higher than that of the water quenched Mn13Cr2. A large number of nano-sized (Fe, Mn)3AlC κ-carbide precipitates increase the initial hardness, strength and wear resistance of the steel after aging treatment at 550℃ for different time. The wear resistance of Fe-24Mn-7Al-1.0C steel is optimum after 1050℃ quenching and aging 1 h at 550℃, which is 1.40 times higher than that of Mn13Cr2. The worn surfaces of Mn13Cr2 consist of wide, long, uneven grooves and deep peeling pits, of which the formation may be ascribed to the repeated plastic deformation, while worn surfaces of the Fe-24Mn-7Al steel consist of tiny peeling pits and light grooves. Many stacking faults and dislocations in different directions are found on the subsurface of Mn13Cr2. Many Taylor lattices are found at the impact subsurface of Fe-24Mn-7Al steel before aging treatments. After aging treatment for 1 h at 550℃, Taylor lattices and high-density dislocations are found, but no twins and martensitic transformation appear on the worn surface.

Key words:  metallic materials      light-weight austenitic steel      water quenching-aging      impact wear      κ- carbide      Taylor lattices     
Received:  11 July 2016     
ZTFLH:  TG142. 25  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.396     OR     https://www.cjmr.org/EN/Y2017/V31/I7/537

Steels C Si Mn Al Cr Mo B P S
Fe-24Mn-7Al-1.0C 1.02 0.34 23.80 7.10 - - 0.0042 0.01 0.013
Mn13Cr2 1.03 0.97 12.71 - 2.02 0.71 - 0.03 0.033
Table 1  Chemical compositions of the test steels (%, mass fraction)
Fig.1  Schematic diagram of the impact tester
Fig.2  True stress-strain curves (a) and corresponding dσ/dε curves (b) of Mn13Cr2 and Fe-24Mn-7Al-1.0C
Materials Process Rm/MPa Rp0.2/MPa A/% ak/Jcm-2 Initial hardness (HB) After wear (HB)
Mn13Cr2 Q 740 390 20 160 220 302
Fe-24Mn-7Al-1.0C Q 785 409 59 231 205 357
Q-A (1 h) 800 500 43 193 237 378
Q-A (2 h) 840 630 32 156 271 362
Q-A (3 h) 884 688 27 75 285 364
Q-A (4 h) 897 736 25 65 308 372
Table 2  Mechanical properties of the test materials after heat treatments under different condition
Fig.3  Microstructures of (a) Mn13Cr2 and (b) Fe-24Mn-7Al-1.0C (Q), (c) SEM image of Fe-24Mn-7Al-1.0C (Q-A /3 h), (d) EDS results of ‘A’ in Fig.c
Fig.4  (a,c,e) Morphologies and (b,d,f) selected area diffraction patterns of matrix of Fe-24Mn-7Al-1.0C
Fig.5  XRD spectra of Fe-24Mn-7Al-1.0C after different heat treatments
Fig.6  (a) wear resistance and (b) relative wear resistance of Mn13Cr2 steel and Fe-24Mn-7Al-1.0C steel (Q)
Fig.7  SEM morphologies of worn surfaces of (a) Mn13Cr2 (Q) and Fe-24Mn-7Al-1.0C with different process treatments of (b) Q;(c) Q-A /1 h; (d) Q-A /2 h; (e) Q-A /3 h; (f) Q-A/4 h
Fig.8  TEM morphologies of worn sub-surfaces of (a) Mn13Cr2 (Q ) and Fe-24Mn-7Al-1.0C with different process treatments of (b) Q; (c) Q-A /1 h; (d) Q-A/2 h; (e) Q-A /3 h; (f) Q-A/4 h
[1] Yang F Q, Song R B, Li Y P, et al.Tensile deformation of low density duplex Fe-Mn-Al-C steel[J]. Mater. Des., 2015, 76: 32
[2] Zhang L F, Song R B, Zhao C, et al.Work hardening behavior involving the substructural evolution of an austenite-ferrite Fe-Mn-Al-C steel[J]. Mater. Sci. Eng., 2015, 640: 225
[3] Chen M S, Cheng H C, Huang C F, et al.Effects of C and Cr content on high-temperature microstructures of Fe-9Al-30Mn-xC-yCr alloys[J]. Mater. Charact., 2010, 61(2): 206
[4] Brüx U, Frommeyer G, Gr?ssel O, et al.Development and characterization of high strength impact resistant Fe-Mn-(Al-, Si) TRIP/TWIP steels[J]. Steel Res. Int., 2002, 73(6-7): 294
[5] Kalashnikov I S, Acselrad O, Shalkevich A, et al.Heat treatment and thermal stability of FeMnAlC alloys[J]. Mater. Process. Technol., 2003, 136(1-3): 72
[6] Sohn S S, Lee B J,Lee Set al. Effects of aluminum content on cracking phenomenon occurring during cold rolling of three ferrite-based lightweight steel[J]. Acta Mater., 2013, 61(15): 5626
[7] Wang C J, Chang Y C.NaCl-induced hot corrosion of Fe-Mn-Al-C alloys[J]. Mater. Chem. Phys., 2002, 76(2): 151
[8] Lins V F C, Freitas M A, Silva E M P E. Corrosion resistance study of Fe-Mn-Al-C alloys using immersion and potentiostatic tests[J]. Appl. Surf. Sci., 2005, 250(1-4): 124
[9] Yang F Q, Song R B, Sun T, et al.Microstructure and mechanical properties of Fe-Mn-Al light-weight high strength steel[J]. Acta Metall. Sin., 2014, 50(8):897(杨富强,宋仁伯,孙挺等. Fe-Mn-Al轻质高强钢组织和力学性能研究[J]. 金属学报, 2014, 50(8):897)
[10] Cheng W C, Cheng C Y, Hsu C W, et al.Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe-C-Mn-Al austenitic steel[J]. Mater. Sci. Eng., 2015, 642: 128
[11] Wu Z Q, Ding H, An X H, et al.Influence of Al content on the strain-hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content[J]. Mater. Sci. Eng., 2015, 639: 187
[12] Acselrad O, de Souza A R, Kalashnikov I S, et al. A first evaluation of the abrasive wear of an austenitic FeMnAlC steel[J]. Wear, 2004, 257(9-10): 999
[13] Abbasi M, Kheirandish S, Kharrazi Y,et al.On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels[J]. Wear, 2010, 268(1-2): 202
[14] Choi K.,Seo C. H.,Lee H.,et al.Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel[J]. Scr. Mater., 2010, 63(10): 1028
[15] Hwang C N, Liu T F.The as-quenched microstructures of Fe-9Al-30Mn-1.2C-xSi alloys[J]. Scr. Mater., 1997, 36(8): 853
[16] Park K, Hwang S W, Son C Y, et al.Effects of heat treatment on microstructure and tensile properties of a Fe-27Mn-12Al-0.8C low-density steel[J]. JOM, 2014, 66(9): 1828
[17] Lu Z, Zhou Y, Rao Q, et al.An investigation of the abrasive wear behavior of ductile cast iron[J]. J. Mater. Process Technol., 2001, 116(2-3): 176
[18] Zuidema B K, Subramanyam D K, Leslie W C.The Effect of Aluminum on the work hardening and wear resistance of Hadfield manganese steel[J]. Metall. Trans., 1987, 18A: 1629
[19] Talonen J, H?nninen H.Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels[J]. Acta Mater., 2007, 55(18): 6108
[20] Gutierrez-Urrutia I, Raabe D.Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel[J]. Acta Mater., 2012, 60(16): 5791
[21] Bay B, Hansen N, Kuhlmann-Wilsdorf D.Deformation structures in lightly rolled pure aluminum[J]. Mater. Sci. Eng., 1989, 113: 385
[22] Hughes D A.Microstructural evolution in a non-cell forming metal: Al Mg[J]. Acta Metal. Mater., 1993, 41(5): 1421
[23] Yoo J D, Park K.Microband-induced plasticity in a high Mn-Al-C light stee[J]. Mater. Sci. Eng., 2008, 496(1-2): 417
[24] Allain S, Chateau J P, Bouaziz O, et al.Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J].Mater. Sci. Eng., 2004, 387-389: 158
[25] Dumay A, Chateau J P, Allain S, et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J]. Mater. Sci. Eng., 2008, 483-484: 184
[26] Allain S, Chateau J P, Bouaziz O. A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel [J]. Mater. Sci. Eng., 2004, 387-389: 143
[27] Karaman I., Sehitoglu H., Gall K.et al.Deformation of single crystal Hadfield steel by twinning and slip[J]. Acta Mater., 2000, 48(6), 1345
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!