Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (11): 801-810    DOI: 10.11901/1005.3093.2016.380
Orginal Article Current Issue | Archive | Adv Search |
Effect of Deep Cryogenic Treatment on Carbon Partition of Tempered High Carbon High Alloy Tool Steel SDC99
Chen XIE1,2,3,Longmei ZHOU1,2,3,Na MIN1,2,3,Xiaochun WU1,2,3,**
1. State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072, China
2. Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200072, China
3. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Cite this article: 

Chen XIE,Longmei ZHOU,Na MIN,Xiaochun WU. Effect of Deep Cryogenic Treatment on Carbon Partition of Tempered High Carbon High Alloy Tool Steel SDC99. Chinese Journal of Materials Research, 2016, 30(11): 801-810.

Download:  HTML  PDF(6997KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of deep cryogenic treatment on microstructure and carbon partition behavior of high carbon high alloy tool steel SDC99, which had been tempered at different temperatures was investigated by three-dimensional atom probe and internal friction combined with the hardness testing. The results show that the hardness of SDC99 steel significantly increased after deep cryogenic treatment. The hardness of SDC99 sample after deep cryogenic treatment is 2 HRC higher than the quenching sample, while the hardness of sample subjected to deep cryogenic treated and then tempered at 200oC is 1.5 HRC higher than the conventional heat treated sample. The enlargement of the Snoek-Kê-K?ster (SKK) peak height indicates stronger interaction between the interstitial carbon atoms and dislocations after deep cryogenic treatment. In comparison to the merely quenched sample, the dislocation density of the quenched and deep cryogenic treated sample increased by 17%. The extent of carbon segregation was enhanced significantly after deep cryogenic treatment. The peak of the carbon atom concentration in carbon-rich regions of SDC99 steel after quenched, deep cryogenic treated, quenched and then tempered at 200℃, deep cryogenic treated and then tempered at 200oC are 2%, 8%, 8% and 15% (atomic fraction) respectively.

Key words:  metallic materials      carbon partition      three-dimensional atom probe      deep cryogenic treatment      internal friction     
Received:  05 July 2016     
Fund: *Supported by National Natural Science Foundation of China Nos. 51171104 & 51301100.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.380     OR     https://www.cjmr.org/EN/Y2016/V30/I11/801

Nomenclature Heat treatment and deep cryogenic treatment processes
Q 1030℃×30 min, oil quenching
QT 100 1030℃×30 min, oil quenching +100℃×2 h
QT 200 1030℃×30 min, oil quenching +200℃×2 h
DCT 1030℃×30 min, oil quenching +(-196)℃×8 h
DCT 100 1030℃×30 min, oil quenching +(-196)℃×8 h+ 100℃×2 h
DCT 200 1030℃×30 min, oil quenching +(-196)℃×8 h+ 200℃×2 h
Table 1  Heat treatments and deep cryogenic treatments of SDC99 steel
Fig.1  Hardness variation of SDC99 steel after different treatments
Fig.2  TEM images of martensite in SDC99 steel after Q: (a) bright-field image; (b) dark-field image and its SAED pattern
Fig.3  TEM images of martensite in SDC99 steel after QT 200: (a) bright-field image; (b) dark-field image and its SAED pattern
Fig.4  TEM images of martensite in SDC99 steel after DCT: (a) bright-field image; (b) dark-field image and its SAED pattern
Fig.5  TEM images of martensite in SDC99 steel after DCT 200: (a) bright-field image; (b) dark-field image and its SAED pattern
Fig.6  Analyzer of temperature dependent internal friction of SDC99 samples: Q(a)、DCT (b)、QT 100 (c)、DCT 100(d)、QT 200 (e) and DCT 200 (f)
Nomenclature Tm/K f / Hz H / eV τ0 /10-14 s
Q 532.85 14.216 1.260 6.46
QT 100 532.55 14.756 1.257 6.05
QT 200 532.65 15.075 1.256 6.20
DCT 522.75 14.372 1.234 6.15
DCT 100 522.85 14.856 1.233 6.13
DCT 200 522.75 15.200 1.232 6.22
Table 2  Parameters corresponding to IF peak of different treated specimens of SDC99 steel
Fig.7  SKK peak of SDC99 steel after different treatments
Nomenclature Q QT 100 QT 200 DCT DCT 100 DCT 200
Dislocation density (×1013 m-2) 6.71 7.35 7.54 7.85 8.59 8.68
Table 3  Dislocation density of SDC99 steel after different treatments
Fig.8  XRD spectrum of SDC99 steel samples after quenching and DCT
Fig.9  (a) spatial distributions of carbon atoms in Q sample (the sample size is 38 nm×38 nm×250 nm); (b) concentration curve of carbon atoms in selected box (the box size is ?10 nm×40 nm); (c) isoconcentration surfaces of 4%, 4.5%, 5% (atomic fraction) carbon atoms
Fig.10  (a) spatial distributions of carbon atoms in DCT sample (the sample size is 76 nm×73 nm×185 nm); (b) concentration curve of carbon atoms in selected box (the box size is ?10 nm×50 nm); (c) isoconcentration surfaces of 4%, 4.5%, 5% (atomic fraction) carbon atoms
Fig.11  (a) spatial distributions of carbon atoms in QT 100 sample (the sample size is 84 nm×83 nm×188 nm); (b) isoconcentration surfaces of 4% carbon atoms; (c) (d) concentration curve of carbon/chrome atoms in selected box (the box size is ?10 nm×40 nm)
Fig.12  (a) spatial distributions of carbon atoms in DCT 100 sample (the sample size is 78 nm×78 nm×269 nm); (b) isoconcentration surfaces of 4% carbon atoms; (c) (d) concentration curve of carbon/chrome atoms in selected box (the box size is ?10 nm×40 nm)
Fig.13  (a) spatial distributions of carbon atoms in QT 200 sample (the sample size is 50 nm×49 nm×155 nm); (b) (c) concentration curve of carbon/chrome atoms in selected area (the area size is ?10 nm×20 nm)
Fig.14  (a) spatial distributions of carbon atoms in DCT 200 sample (the sample size is 76 nm×75 nm×243 nm); (b) (c) concentration curve of carbon/chrome atoms in selected area (the area size is ?10 nm×40 nm)
1 Simranpreet Singh Gill, Jagdev Singh, Rupinder Singh, Harpreet Singh, Metallurgical principles of cryogenically treated tool steels - A review on the current state of science, The International Journal of Advanced Manufacturing Technology, 54(1), 59(2011)
2 S?tk? Akincio?lu, Hasan G?kkaya, ?lyas Uygur, A review of cryogenic treatment on cutting tools, The International Journal of Advanced Manufacturing Technology, 78(9-12), 1609(2015)
3 A. Bensely, S. Venkatesh, D. Mohan Lal, G. Nagarajan, A. Rajadurai, K. Junik, Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel, Materials Science and Engineering A, 479(1-2), 229(2008)
4 Nursel Altan ?zbek, Adem ?i?ek, Mahmut Gülesin, Onur ?zbek, Investigation of the effects of cryogenic treatment applied at different holding times to cemented carbide inserts on tool wear, International Journal of Machine Tools and Manufacture, 86(6), 34(2014)
5 Hadi Ghasemi Nanesa, Mohammad Jahazi, Reza Naraghi, Martensitic transformation in AISI D2 tool steel during continuous cooling to 173 K, Journal of Materials Science, 50(17), 5758(2015)
6 Swamini A. Chopra, V. G.Sargade, Metallurgy behind the Cryogenic Treatment of Cutting Tools: An Overview, Materials Today: Proceedings, 2(4-5), 1814(2015)
7 V. G. Gavriljuk, W. Theisen, V. V. Sirosh, E. V. Polshin, A. Kortmann, G. S. Mogilny, Yu. N.Petrov, Ye. V. Tarusin , Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment, Acta Materialia, 61(5), 1705(2013)
8 Matteo Villa, Karen Pantleon, Marcel A.J. Somers, Evolution of compressive strains in retained austenite during sub-zero Celsius martensite formation and tempering, Acta Materialia, 65(65), 383(2014)
9 F. Meng, K. Tagashira, R. Azuma, H. Sohm, Role of eta-carbide precipitations in the wear resistance improvements of Fe-12Cr-Mo-V-1.4 C tool steel by cryogenic treatment, ISIJ International, 34(20), 205(1994)
10 S. H. Li, L. H. Deng, X. C. Wu, Y. A. Min, H. B. Wang, Influence of deep cryogenic treatment on microstructure and evaluation by internal friction of a tool steel, Cryogenics, 50(11-12), 754(2010)
11 Debdulal Das, Apurba Kishore Dutta, Kalyan Kumar Ray, Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness, Materials Science and Engineering A, 527(9), 2182(2010)
12 Debdulal Das, Apurba Kishore Dutta, Kalyan Kumar Ray, Sub-zero treatments of AISI D2 steel: Part II. Wear behavior, Materials Science and Engineering A, 527(9), 2194(2010)
13 Seyed Ebrahim Vahdat, Keyvan Seyedi Niaki, Mechanism of Precipitation of Carbides during Deep Cryogenic Processing in 1.2542 Tool Steel, Materials Today: Proceedings, 2(4), 1859(2015)
14 J. Y. Huang, Y. T. Zhu, X. Z. Liao, I. J. Beyerlein, M. A. Bourke, T. E. Mitchell, Microstructure of cryogenic treated M2 tool steel, Materials Science and Engineering A, 339(1), 241(2003)
15 Marcos Pérez, Francisco Javier Belzunce, The effect of deep cryogenic treatments on the mechanical properties of an AISI H13 steel, Materials Science and Engineering A, 624, 32(2015)
16 V. G. Gavriljuk, V. A. Sirosh, YU. N. Petrov, A. I.Tyshchenko, W. Theisen, A. Kortmann, Carbide precipitation during tempering of a tool steel subjected to deep cryogenic treatment, Metallurgical and Materials Transactions A, 45(5), 2453(2014)
17 G. Krauss, ZHONG Ping, GU Baozhu, Microstructure transformation of tempered martensite in steel during tempering, Ordnance Material Science and Engineering, (7), 55(1987)
17 (G. Krauss, 钟平, 古宝珠,钢中马氏体回火时的组织转变, 兵器材料科学与工程, (7), 55(1987))
18 QIAN Shiqiang, LI Manping, YAN Minjie,Research on martensiticmorphology and tempering characteristic of T8 steel after deep cryogenic treatment,Hot Working Technology,(4),3(2001)
18 (钱士强, 李曼萍, 严敏杰, T8钢深冷处理后的马氏体形态和回火特性研究, 热加工工艺, (4), 3(2001))
19 J. W. Li, Y. Feng, L. L. Tang, X. C. Wu, FEM prediction of retained austenite evolution in cold work die steel during deep cryogenic treatment, Materials Letters, 100(2), 274(2013)
20 I. S. Golovin, H. Neuh?user, A. Rivière, A. Strahl, Anelasticity of Fe-Al alloys, revisited, Intermetallics, 12, 125(2004)
21 LI Shaohong,Research of microstructure design and control on high strength high toughness cold work die steel,PhD thesis,Shanghai Univercity(2011)
21 (李绍宏,高强韧冷作模具钢组织设计及组织控制研究,博士学位论文 上海大学(2011))
22 J. J. Hoyos, A. A. Ghilarducci, D. Mari, Evaluation of dislocation density and interstitial carbon content in quenched and tempered steel by internal friction, Materials Science and Engineering A, 640(29), 460(2015)
23 Y. N. Wang, M. Gu, L. H. Sun, K. L. Ngai, Mechanism of Snoek-K?ster relaxation in body-centered-cubic metals, Physical Review B, 50(6), 3525(1994)
24 I. Tkalcec, D. Mari, Internal friction in martensitic, ferritic and bainitic carbon steel; cold work effects, Materials Science and Engineering A, 370(1-2), 213(2004)
25 D. Das, A. K. Dutta, V. Toppo, K. K. Ray, Effect of deep cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel, Materials and Manufacturing Processes, 22(4), 474(2007)
26 M. Hayakawa, M. Tanigami, M. Oka, Low temperature aging of the freshly formed martensite in an Fe-Ni-C Alloy, Metallurgical Transactions A, 16A(10), 1745(1985)
27 F. G. Caballero, C. Garcia-Mateo, M. J. Santofimia, M. K. Miller, C.García de Andrés, New experimental evidence on the incomplete transformation phenomenon in steel, Acta Materialia, 57(1), 8(2009)
28 Chen Zhu, Alfred Cerezo, George D.W. Smith, Carbide characterization in low-temperature tempered steels, Ultramicroscopy, 109(5), 545(2009)
29 A. I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O. N. Razumov, A. P. Skoblik, V. A. Sirosh, Yu. N. Petrov , V. G. Gavriljuk, Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel, Materials Science and Engineering A, 527(26), 7027(2010)
30 N. Min, H. M. Li, C. Xie, X. C. Wu, Experimental investigation of segregation of carbon atoms due to sub-zero cryogenic treatment in cold work tool steel by mechanical spectroscopy and atom probe tomography, Archives of Metallurgy and Materials, 60(2), 1109(2015)
31 HU Gengxiang, CAI Xun, Ed., Fundamentals of Material Science(The second edition) (Shanghai, Shanghai Jiaotong University Press, 2000)p.152
31 (胡赓祥, 蔡珣主编,材料科学基础(第二版)( 上海, 上海交通大学出版社, 2000) p.152)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!