Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (8): 603-608    DOI: 10.11901/1005.3093.2016.227
Orginal Article Current Issue | Archive | Adv Search |
Effect of Bi-Content on Microstructure Evolution of Al-Bi Monotectic Alloy
KANG Zhiqiang1,**, YANG Xue1, FENG Guohui1, ZHANG Lin2
1. School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2. Key Laboratory of Electromagnetic Processing of Material of Ministry of Education, Northeastern University, Shenyang 110004, China
Cite this article: 

KANG Zhiqiang, YANG Xue, FENG Guohui, ZHANG Lin. Effect of Bi-Content on Microstructure Evolution of Al-Bi Monotectic Alloy. Chinese Journal of Materials Research, 2016, 30(8): 603-608.

Download:  HTML  PDF(2310KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Bi-content on microstructure evolution of Al-Bi monotectic alloy and solidification progress ofmiscibility gap under the action of gravity was studied by air cooling to desired temperatures and thenquenching, as well as bynumerical simulation. The average diameter and volume fraction of Bi-rich droplets in Al-10%Bi monotectic alloy are 1.1 and 12.8 times of those in Al-5%Bi monotectic alloyrespectively. A huge amount of large-size drops rich inBi gather in the lower part of Al-10% Bialloywith low solidification uniformity.The average size of drops rich in Bi in the alloy of Al-5%Bi with a uniform solidification; There's no large-size drops rich in Bi in the solidifiedmonotecticalloy with Al-3.4%Bi, and its solidification is uniform.The analysis demonstrates that the increase of the amount of Bi-rich phase may enhance the gravity action on the drops, thereby aggravate the solidification process with separation and decomposition of liquid phasesin the immiscible area, and enlargethe size and number of drops rich in Bi,whilethe synergistic action of Ostwald ripening and collision coagulation of drops yielda huge amount of large-size drops rich in Bi gathering in the lower part of the solidifying alloy, thus aggravates the macro segregation of the solidified monotectic alloy.

Key words:  metallic materials      Al-Bi monotctic alloy      alloy composition      solidification microstructure      gravity migration     
Fund: *Supported by National Nature Science Foundation of China No.51401133, Science and Technology Fund in Liaoning Province No.20141074, Scientific Research Projects in Liaoning Province Department of Education No L2014230 and Shenyang Jianzhu University Discipline HanYu Project No XKHY2-48

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.227     OR     https://www.cjmr.org/EN/Y2016/V30/I8/603

Fig.1  Microstructure evolution of Al-Bi alloys in the middle of sample with Al-3.4%Bi, Al-5%Bi and Al-10%Bi during solidification process (a) Al-3.4%Bi, T1=766℃, (c) Al-5%Bi, T1=766℃, (e) Al-10%Bi, T1=766℃, (b) Al-3.4%Bi, T2=749℃, (d) Al-5%Bi, T2=749℃, (f) Al-10%Bi, T2=749℃
Fig.2  Distribution of the Bi-rich droplets in the top (a) and bottom (b) of the Al-Bi alloy samples with different composition quenched at 700℃
Fig.3  (a) Average diameter and (b)number density of the Bi-rich droplets in the top, middle and bottom of the Al-Bi alloy samples with different composition quenched at 700℃
Fig.4  Volume fraction distribution and diameter distribution of the L2 phase near the solidification end of Al-5%Bi and Al-10%Bi alloys (a) L2 phase volume fraction distribution of Al-5%Bi, f2max=0.20%, (b) L2 phase volume fraction distribution of Al-10%Bi, f2max=2.56%, (c) L2 phase diameter distribution of Al-5%Bi, d2max=13.7 μm, (d) L2 phase diameter distribution of Al-10%Bi, d2max=27.4 μm
1 ZHANG Lin, WANG Engang, ZUO Xiaowei, Effect of magnetic field on liquid-liquid separationof Cu-Pb-La hypermonotecticalloy, Rare Metal Material and Engineering, 44(2), 344(2015)
(张林, 王恩刚, 左小伟, 磁场对Cu-Pb-La过偏晶合金液-液分离的作用, 稀有金属材料与工程, 44(2), 344(2015))
2 ZHAO Jingyun, LIU Lanqing, Effect of Directional solidification rate on solidified structure of Al-Bi monotectic composition alloy and computer analysis , Foundry Tecnology, 36(4), 994(2015)
(赵敬云, 刘兰青, 定向凝固速度对Al-Bi偏晶点成分合金凝固组织的影响及计算机分析, 铸造技术, 36(4), 994(2015))
3 KANG Zhiqiang, WANG Engang, ZHANG Lin, Simulation and Analysis of Liquid-Liquid Separation Mechanism of Hypermonotectic Al-Bi Alloy, Journal of Northeastern University(Natural Science), 31(9), 1262(2010)
(康智强, 王恩刚, 张林, Al-Bi过偏晶合金液-液相分离模拟与分析, 东北大学学报(自然科学版), 31(9), 1262(2010))
doi: 10.3969/j.issn.1005-3026.2010.09.012
4 Shu C, Zhao J Z, Jiang H X, Microstructure evolution of a ternary monotectic alloy during directional solidification, ActaMetall, 28(3), 316(2015)
doi: 10.1007/s40195-014-0199-z
5 LI Haili, ZHAO Jiuzhou, Solidification of Al-Pbmonotectic alloy under a static magnetic field, Acta Metallurgica Sinica, 41(1), 81(2001)
(李海丽, 赵九洲, 磁场作用下Al-Pb偏晶合金的凝固过程, 金属学报, 41(1), 81(2001))
6 LI Haili, ZHAO Jiuzhou, Modelling and simulation of the microstructure formation in a strip cast Al-Pb alloy, Acta Metallurgica Sinica, 46(6), 695(2010)(李海丽, 赵九洲, Al-Pb偏晶合金连续凝固过程模拟, 金属学报, 46(6), 695(2010))
doi: 10.3724/SP.J.1037.2009.00782
7 YANG Youcai, FU Zuoxin, SHEN Yue, Model for Solidification Microstructure Simulation of Ag-Cu Alloy, Precious Metals, 33(4), 33(2012)
(杨有才, 付作鑫, 沈月, Ag-Cu合金凝固微观组织模拟数学模型, 贵金属, 33(4), 33(2012))
doi: 10.3969/j.issn.1004-0676.2012.04.007
8 ZOU Qinghua, Thermal Physical Properties of Materials withNon-homogenous Nucleation of Liquid Drop, Basic Sciences Journal of Textile Universities, 9(3), 82(1996)
(邹庆化, 材料液滴非均匀形核时的热物理特性, 纺织高校基础科学学报, 9(3), 82(1996))
9 HUANG Linjun, CHAO Huiling, LIU Yue, Research progresses of nucleation theory of crystals, Materials Review, 28(15), 17(2014)
(黄林军, 曹慧玲, 刘悦, 等, 晶体形核理论的研究进展, 材料导报, 28(15), 17(2014))
doi: 10.11896/j.issn.1005-023X.2014.15.003
10 Thévoz P, Desbiolles J L, Rappaz M.Modeling of equiaxed microstructure formation in casting, Metallurgical and Materials Transactions A, 20A(2), 311(1989)
11 ZHAO Jiuzhou, Zn - Pbmonotectic alloy liquid separation mechanism and the solidification behavior, PhD Thesis (Harbin, Harbin Institute of Technology, 1994)
(赵九洲, Zn-Pb偏晶合金液相分离机制及凝固行为, 博士学位论文 (哈尔滨, 哈尔滨工业大学)1994)
12 Ratke L, Diefenbach S, Liquid immiscible alloys, Materials Science and Engineering R: Reports, 15(7-8), 263(1995)
doi: 10.1016/0927-796X(95)00180-8
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!