Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (7): 481-488    DOI: 10.11901/1005.3093.2015.322
Orginal Article Current Issue | Archive | Adv Search |
Very High Cycle Fatigue Properties of CrMoW Rotor Steel at High-temperature
HOU Fang1, LI Jiukai1, XIE Shaoxiong2, LIU Yongjie1, WANG Qingyuan1,2,*(), ZHANG Junhui3
1. College of Architecture and Environment, Sichuan University, Chengdu 610065, China
2. School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
3. Shanghai Electric Power Generation Equipment Co., Ltd., Shanghai Turbine Plant, Shanghai 200240, China
Cite this article: 

HOU Fang, LI Jiukai, XIE Shaoxiong, LIU Yongjie, WANG Qingyuan, ZHANG Junhui. Very High Cycle Fatigue Properties of CrMoW Rotor Steel at High-temperature. Chinese Journal of Materials Research, 2016, 30(7): 481-488.

Download:  HTML  PDF(6674KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The fatigue properties of CrMoW rotor steel were investigated by a high temperature ultrasonic fatigue system. Fatigue tests of CrMoW rotor steel up to 1×1010 cycles had been conducted at room temperature and 600℃ respectively. Results reveal that the type of S-N curves present continuously descending at room temperature and 600℃. Fatigue fracture occured over 109 cycles. Fractograph of specimens show that Crack initiate mainly from the surface for the specimens that fatigue life is less than 1×107 cycles, but crack initiate mostly from inclusions for those that fatigue life is greater than 1×107 cycles at room temperature. It is found that crack can also initiate at inclusions, but the modes of crack initiation do not play a decisive role for the fatigue life at high temperature. Threshold values of fatigue crack growth obtained by measuring the size of fisheye are 3.4 MPam1/2 and 1.0 MPam1/2 at room temperature and 600℃ respectively.

Key words:  metallic materials      rotor steel      high temperature      very high cycle fatigue      inclusion initiation      threshold value of crack growth     
Received:  14 October 2015     
Fund: *Supported by National Nature Science Foundation of China Nos.11172188&11327801&11502151.Manuscript received October 14, 2015; in revised form December 25, 2015.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.322     OR     https://www.cjmr.org/EN/Y2016/V30/I7/481

Fig.1  Microstructures of CrMoW rotor steel (a) optical, (b) SEM
C Cr Mo W Ni Fe
0.13 10.37 1.08 1.01 0.80 86
Table 1  Chemical composition of the materials(%, mass fraction)
Temperature/℃ E/GPa Rm/MPa Rp0.2/MPa Hardness(HV)
20℃ 210 900 780 296.8
600℃ 138 550 490 -
Table 2  Mechanical properties of the materials
Fig.2  Specimen of ultrasonic testing (a) room temperature; (b) high temperature (unit: mm); (c) surface topography
Fig.3  High-temperature ultrasonic fatigue testing system
Fig.4  Temperature fluctuation curve
Fig.5  S-N curve of room temperature
Fig.6  S-N curve of high temperature
Fig.7  Fatigue strength varies with fatigue life
Fig.8  Ratio of fatigue strength to tensile strength varies with fatigue life
Fig.9  Typical fractographs of room temperature specimens (a) σ=510 MPa, Nf=1.3806×106; (b) σ=510 MPa, Nf=1.3806×106; (c) σ=490 MPa, Nf=1.5442×107; (d) σ=490 MPa, Nf=1.5442×107
Fig.10  Fractographs of short-life specimens (a) σ=470 MPa, Nf=8.5764 ×105; (b) σ=465 MPa, Nf=3.0132 ×105
Fig.11  Typical fractographs of high temperature specimens (a) σ=125 MPa, Nf=6.6955×108; (b) σ=125 MPa, Nf=6.6955×108; (c) σ=185 MPa, Nf=7.2652 ×106; (d) σ=185 MPa, Nf =7.2652 ×106
Fig.12  Relationship between the diameter of inclusion and fatigue life
1 Wu Haili, ZHU Yuemei, JIA Guoqing, Low cycle fatigue behaviors of X12CrMoWVNbN10-1-1 steel for rotors at room temperature, Journal of University of Science and Technology Beijing, 33(7), 842(2011)
(吴海利, 朱月梅, 贾国庆, X12CrMoWVNbN10-1-1转子钢室温低周疲劳特性. 北京科技大学学报, 33(7), 842(2011))
2 ZHAO Peng, XUAN Fuzhen, TU Shandong, Experimental study on ratchet effect of steel X12CrMoWVNbB10-1-1 for USC steam turbine rotors, Journal of Chinese Society of Power Engineering, 30(4), 310(2010)
(赵鹏, 轩福贞, 涂善东, 超超临界汽轮机转子X12CrMoWVNbB10-1-1钢棘轮效应的试验研究, 动力工程学报, 30(4), 310(2010))
3 CHEN Jian, HE Jianjun, SUN Qing-min, et al.Effect of loading rate on low-cycle fatigue properties of 30CrMo1V rotor steel, Journal of Chinese Society of Power Enginnering, 30(9) 712(2010)
(陈荐, 何建军, 孙清民, 加载速率对30Cr1Mo1V汽轮机转子钢低周疲劳特性的影响, 动力工程学报, 30(9) 712(2010))
4 MAO Xueping, MA Zhiyong, WANG Gang, Study on softening property of 30Cr1Mo1V steel under high temperature low-cycle fatigue, Proceedings of the CSEE, 26(16), 134(2006)
(毛雪平, 马志勇, 王罡, 30Cr1Mo1V钢高温低周疲劳中的软化特性, 中国电机工程学报, 26(16), 134(2006))
doi: 10.3321/j.issn:0258-8013.2006.16.023
5 Barella S, Bellogini M, Boniardi M, Failure analysis of a steam turbine rotor, Engineering Failure Analysis, 18(6), 1512(2011)
doi: 10.1016/j.engfailanal.2011.05.006
6 Fournier B, Dalle F, Sauzay M, Comparison of various 9-12%Cr steels under fatigue and creep-fatigue loadings at high temperature,Materials Science and Engineering: A, 528(22-23), 6935(2011)
7 WU Q, LU F, CUI H, Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint, Materials Science and Engineering: A, 615, 99(2014)
8 YAN Yi-ming, HU Zheng-fei, LIN Fu-sheng, Fatigue behavior of 30CrMo1V rotor steel at elevated temperature after long-term service, Journal of Materials Engineering, (11), 3(2012)
(严益民, 胡正飞, 林富生, 汽轮机转子30Cr1Mo1V钢长期服役状态下的高温疲劳行为, 材料工程, (11), 3(2012))
9 Wang Q Y, Berard J Y, Dubarre A, Gigacycle fatigue of ferrous alloys, Fatigue Fracture Engineering Materials Structures, 22(8), 668(2003)
doi: 10.1046/j.1460-2695.1999.t01-1-00185.x
10 BATHIAS C, Piezoelectric fatigue testing machines and devices, International Journal of Fatigue, 28(11), 1440(2006)
doi: 10.1016/j.ijfatigue.2005.09.020
11 Bruchhausen M, Hhner P, Fischer B, Device for carrying out environmental very high cycle fatigue tests with ultrasonic excitation in asymmetric push-pull mode, International Journal of Fatigue, 52, 11(2013)
doi: 10.1016/j.ijfatigue.2013.02.010
12 EBARA R, The present situation and future problems in ultrasonic fatigue testing-mainly reviewed on environmental effects and materials’screening. International Journal of Fatigue, 28(11), 1466(2006)
doi: 10.1016/j.ijfatigue.2005.04.019
13 Mcevily A J, Nakamura T, Oguma H, On the mechanism of very high cycle fatigue in Ti-6Al-4V, Scripta Materialia, 59(11), 1208(2008)
doi: 10.1016/j.scriptamat.2008.08.012
14 Stanzl-Tschegg S, Very high cycle fatigue measuring techniques, International Journal of Fatigue, 60(1), 6(2014)
doi: 10.1016/j.ijfatigue.2012.11.016
15 Furuya Y, Kobayashi K, Hayakawa M, High-temperature ultrasonic fatigue testing of single-crystal superalloys, Materials Letters, 69, 2(2012)
doi: 10.1016/j.matlet.2011.11.066
16 Wagner D, Cavalieri F J, Bathias C, Ultrasonic fatigue tests at high temperature on an austenitic steel, Propulsion and Power Research, 1(1), 32(2012)
doi: 10.1016/j.jppr.2012.10.008
17 Yi J Z, Torbet C J, Feng Q, Ultrasonic fatigue of a single crystal Ni-base superalloy at 1000℃, Materials Science and Engineering: A, 443(1-2), 143(2007)
doi: 10.1016/j.msea.2006.08.028
18 Zhu X, Shyam A, Jones J, Effects of microstructure and temperature on fatigue behavior of E319-T7 cast aluminum alloy in very long life cycles, International Journal of Fatigue, 28(11), 1567(2006)
doi: 10.1016/j.ijfatigue.2005.04.016
19 LI Jiukai, LIU Yongjie, WANG Qingyuan, High-temperature ultra-high cycle fatigue testing of TC17 titanium alloy, Journal of Aerospace Power, 29(7), 1568(2014
)(李久楷, 刘永杰, 王清远, TC17钛合金高温超高周疲劳实验. 航空动力学报, 29(7), 1568(2014))
doi: 10.13224/j.cnki.jasp.2014.07.008
20 Shyam A, Torbet C J, Jha S K, Development of ultrasonic fatigue for rapid high temperature fatigue studies in turbine engine materials, Materials Damage Prognosis, 248(2005)
21 Abe T, Gigacycle fatigue properties of 1800MPa class spring steels. Fatigue & Fracture of Engineering Materials & Structure, 22(7), 162(2004)
doi: 10.1111/j.1460-2695.2004.00737.x
22 Sakai T, Sato Y, Oguma N, Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue, Fatigue & Fracture of Engineering Materials & Structures, 25(8-9), 766(2002)
doi: 10.1046/j.1460-2695.2002.00574.x
23 HONG Youshi, ZHAO Aiguo, QIAN Guian, Essential characteristics and influential factors for very-high -cycle fatigue behavior of metallic materials, Acta Metallurgica Sinica, 45(7), 770(2009)(洪友士, 赵爱国, 钱桂安, 合金材料超高周疲劳行为的基本特征和影响因素, 金属学报, 45(7), 770(2009))
24 Nie Y H, Fu W T, Hui W J, Very high cycle fatigue behaviour of 2000-MPa ultra-high-strength spring steel with bainite-martensite duplex microstructure, Fatigue & Fracture of Engineering Materials & Structures, 32(3), 192(2009)
doi: 10.1111/j.1460-2695.2008.01319.x
25 YANG Zhenguo, LI Shouxin, LI Guangyi, WANG Qingyuan, Estimation of the critical size of inclusion in high strength steel under high cycle fatigue condition, Acta Metallurgica S inica, 41(11), 1138(2005
)(杨振国, 李守新, 李广义, 王清远, 高周疲劳条件下高强钢临界夹杂物尺寸估算, 金属学报, 41(11), 1138(2005))
doi: 10.3321/j.issn:0412-1961.2005.11.004
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!