Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (4): 314-320    DOI: 10.11901/1005.3093.2015.692
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Microwave Absorption Properties of Cenospheres-Barium Ferrite Composites
PANG Jianfeng1,2,**(), HUANG Wenjuan1, LU Yanqiu1, LI Ling1, QIU Quan1, MA Xijun1,2, XIE Xingyong1,2
1. Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai’an 223003, China
2. Jiangsu Province Key Laboratory of Palygorskite Science and Applied Technology, Huai’an 223003, China
Cite this article: 

PANG Jianfeng, HUANG Wenjuan, LU Yanqiu, LI Ling, QIU Quan, MA Xijun, XIE Xingyong. Preparation and Microwave Absorption Properties of Cenospheres-Barium Ferrite Composites. Chinese Journal of Materials Research, 2016, 30(4): 314-320.

Download:  HTML  PDF(2475KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The magnetic composites with low density of cenospheres-barium ferrite were prepared by a sol-gel self-propagating combustion technology. The morphology, structure, electromagnetic properties and microwave absorption properties of the composite powders were characterized by the scanning electron microscope, thermogravimetry-differential scanning calorimetry, X-ray diffraction, vibrating sample magnetometer and vector network analyzer. The results show that cenospheres were covered with barium ferrite coating of ca 5 nm to 15 nm in thickness. The size of barium ferrite coated particles is less than 60 nm. In addition, it is found that the composites are composed of barium ferrite, hematite, minor mullite and quartz, and the magnetic properties of the composite material could be enhanced with the increasing mass ratio of barium ferrite to cenospheres. Furthermore, the samples exhibit better dielectric loss and magnetic loss properties within a frequency range from 2 GHz to 18 GHz. The maximum reflection loss of the composite material of 1.5 mm in thickness reaches -29.2 dB at 14.2 GHz and the bandwidth for reflection loss of -10 dB is 4.5 GHz.

Key words:  composite      barium ferrite      fly ash cenospheres      electromagnetic properties      microwave absorption properties     
Received:  20 November 2014     
ZTFLH:  TB34  
Fund: Supported by Scientific Research Fund of Huaiyin Institute of Technology No.HGB1402
About author:  To whom correspondence should be addressed, Tel: (0517)83591096, E-mail: pangjf@hyit.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.692     OR     https://www.cjmr.org/EN/Y2016/V30/I4/314

Fig.1  SEM images of the FACs / barium ferrite at low magnification (a), (b); at high magnification (c) and EDX spectrum (d)
Samples S1 S2 S3
Coating thickness / nm 5.56 8.39 13.6
Density / gcm-3 1.94 2.53 3.11
Table 1  Coating thickness and density results of samples S1, S2 and S3
Fig.2  Dry gel thermal analysis patterns of sample S3 (a) TG and (b) DSC
Fig.3  XRD patterns of sample S3 (a) auto-combustion powders and combustion powder with different calcining temperatures for 2 h (b) 650℃, (c) 750 and (d) 850℃
Fig.4  XRD patterns of the samples (a) S1, (b) S2, (c) S3 and (d) S0
Fig.5  Magnetic hysteresis loops of the samples (a) S1, (b) S2, (c) S3 and (d) S0
Samples Saturation magnetization
Ms / emug-1
Remanence
Mr / emug-1
Coercivity
Hc / Oe
S1 17.5 11.4 4541
S2 26.7 16.9 4937
S3 43.6 30.5 5239
S0 55.8 36.4 5536
Table 2  Magnetic parameters of the samples (a) S1, (b) S2, (c) S3 and (d) S0
Fig.6  Electromagnetic parameters of FACs and the samples S1, S2, S3 and S0 (a) ε', (b) ε", (c) μ', (d) μ"
Fig.7  Frequency dependence of reflection loss for the composites at different thickness (a) S1, (b) S2, (c) S3 and (d) S0
Samples fm / GHz dm / mm Minimal RL / dB Bandwidth*/GHz
S1 16.6 1.5 -24.6 2.7
S2 13.0 1.5 -26.6 1.6
S3 14.2 1.5 -29.2 4.5
S0 11.6 1.0 -32.6 2.4
S0 11.7 1.5 -21.8 3.5
Table 3  Microwave absorption properties of the composites
1 H. Zheng, M. G. Han, J. X. Deng, L. Zheng, J. Wu, L. J. Deng, H. B. Qin, Synthesize of barium ferrite nanowire array by self-fabricated porous silicon template, Applied Surface Science, 311, 672(2014)
doi: 10.1016/j.apsusc.2014.05.134
2 X. Tang, Y. G. Yang, Surface modification of M-Ba-ferrite powders by polyaniline: Towards improving microwave electromagnetic response, Applied Surface Science, 255, 9381(2009)
3 M.Manikandan, C. Venkateswaran, Effect of high energy milling on the synthesis temperature, magnetic and electrical properties of barium hexagonal ferrite, Journal of Magnetism and Magnetic Materials, 358, 82(2014)
doi: 10.1016/j.jmmm.2014.01.041
4 Y. Y. Meng, M. H. He, Q. Zeng, D. L. Jiao, S. Shukla, R. V. Ramanujan, Z. W. Liu, Synthesis of barium ferrite ultrafine powders by a sol-gel combustion method using glycine gels, Journal of Alloys and Compounds, 583, 220(2014)
5 MENG Jinhong, CHEN Weihong, LIU Yu, SUN Jie, CAO Xiaohui, WANG Wenjv, YU Mingxun, Synthesis of the plate-shaped barium ferrite by the second chemical co-precipitation method and investigation of the magnetic properties, Chinese Journal of Materials Research, 26(1), 107(2012)
(孟锦宏, 陈威宏, 刘宇, 孙杰, 曹晓晖, 王文举, 于名讯, 二次化学共沉淀法制备片状钡铁氧体的形成历程及磁性能研究, 材料研究学报, 26(1), 107(2012))
6 G. H. Mu, X. F. Pan, N. Chen, K. K. Gan, M. Y. Gu, Preparation and magnetic properties of barium hexaferrite nanorods, Materials Research Bulletin, 43, 1369(2008)
doi: 10.1016/j.materresbull.2007.06.052
7 W. Zhong, W.Ding, N. Zhang, Y. Du, Q. Yan, J. Hong, Key step in synthesis of ultrafine BaFe12O19 by sol-gel technique, Journal of Magnetism and Magnetic Materials, 168, 196(1997)
8 LEI Jun, DAI Honglian, MAO Enliang, XIAO Feng, LI Shipu, Preparation and surface modification of spherical nano-BaFe12O19, Journal of the Chinese Ceramic Society, 38, 2289(2010)
(雷军, 戴红莲, 毛恩亮, 肖峰, 李世普球形纳米 BaFe12O19的制备及表面改性, 硅酸盐学报, 38, 2289(2010))
9 NIU Xingshu, XU Hong, XU Jiaqiang, Preparation and properties of nanocrysta γ-Fe2O3, Chinese Journal of Materials Research, 15, 593(2001)
(牛新书, 徐荭, 徐甲强, 纳米γ-Fe2O3的合成及气敏性能, 材料研究学报, 15, 593(2001))
doi:
10 X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G. Zhu, B. Lv, J. P. Lei, C. G.Lee, Microwave absorption properties of the carbon-coated nickel nanocapsules, Applied Physics Letters, 89, 053115(2006)
doi: 10.1063/1.2236965
11 C. H. Peng, H. W. Wang, S. W. Kan, M. Z. Shen, Y. M. Wei, S. Y. Chen, Microwave absorbing materials using Ag-NiZn ferrite core-shell nanopowders as fillers, Journal of Magnetism and Magnetic Materials, 284, 113(2004)
12 R. C. Che, C. Y. Zhi, C. Y. Liang, Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite, Applied Physics Letters, 88, 033105(2006)
13 R. C. Che, L. M. Peng, X. F. Duan, Q. Chen, X. L.Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes, Advanced Materials, 16, 401(2004)
doi: 10.1002/adma.200306460
14 H. M. Xiao, X. M. Liu, S. Y. Fu.Synthesis, magnetic and microwave absorbing properties of core-shell structured MnFe2O4/TiO2 nanocomposites, Compounds Science Technology, 66, 2003(2006)
15 FENG Weicun, GAO Ruwei, HAN Guangbing, ZHU mingGang, LI Wei, Exchange-coupling interaction and effective anisotropy of NdFeB nanocomposite permanent magnetic materials, Acta Physica Sinica, 53, 3171(2004)
(冯维存, 高汝伟, 韩广兵, 朱明刚, 李卫, NdFeB纳米复合永磁材料的交换耦合相互作用和有效各向异性, 物理学报, 53, 3171(2004))
16 G. B. Han, R. W. Gao, S. Fu, W. C. Feng, H. Q. Liu, W. Chen, W. Li, Y. Q. Guo, Effective anisotropy between magnetically soft and hard grains in nanocomposite magnets, Applied Physics A: Materials Science and Processing, 81, 579(2005)
doi: 10.1007/s00339-004-2741-8
17 H. Kato, M. Ishizone, T. Miyazaki, K. Koyama, H. Nojiri, M. Motokawa, High-frequency ferromagnetic resonance in Nd2Fe14 B/α-Fe nanocomposite films, Magnetics, 2001, 37, 2567(2001)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!