Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (3): 185-194    DOI: 10.11901/1005.3093.2014.291
Current Issue | Archive | Adv Search |
Effect of Coiling Temperature on Microstructure and Mechanical Properties of (B+M/A) X80 Pipeline Steel with Excellent Deformability
Jing MA(),Xiaoyong ZHANG,Shixia CHENG,Huilin GAO
School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
Cite this article: 

Jing MA,Xiaoyong ZHANG,Shixia CHENG,Huilin GAO. Effect of Coiling Temperature on Microstructure and Mechanical Properties of (B+M/A) X80 Pipeline Steel with Excellent Deformability. Chinese Journal of Materials Research, 2015, 29(3): 185-194.

Download:  HTML  PDF(7337KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High deformability X80 pipeline steel with microstructure composed of bainite and martinsite/austenite (B+M/A) can be obtained through the coiling continuous partitioning process. Effect of coiling temperature on the microstructure evolution and mechanical performance of the (B+M/A) X80 pipeline steel was studied by means of microscopic analysis, X-ray diffraction and mechanical property tests. The results show that with the increasing coiling temperature, the strength of the steel decreases and the ductility increases because of the decrease amount of bainite and dislocation density, as well as the increase amount of retained austenite. By a high coiling temperature, both of the precipitation of carbides and the decomposition of retained austenites result in the increase of strength and the decrease of plasticity. With a process by proper coiling temperature, the produced steel with such (B+M/A) dual-phase structure may exhibit a comprehensive mechanical performance with such as lower ratio of yield to strength, higher uniform elongation and strain hardening index, which meets the technical requirements of high deformability pipeline steel.

Key words:  metallic materials      (B+M/A) X80 pipeline steel with excellent deformability      the coiling continuous partitioning process      coiling temperature      microstructure and properties     
Received:  17 June 2014     
Fund: *Supported by National Natural Science Foundation of China No.51174165, Special Project on Important Discipline of Shaanxi Province No. YS37020203, and Natural Science Fund of Shaanxi Province No. 2014JM6232.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.291     OR     https://www.cjmr.org/EN/Y2015/V29/I3/185

Fig.1  Schematic of the simulation coiling continuous process
C Si Mn P S B Al Mo Cr Ni Cu V Nb Ti
0.049 0.23 1.80 0.011 0.0025 <0.0001 0.027 0.28 0.018 0.25 0.17 0.0069 0.064 0.013
Table 1  Chemical composition of X80 experimental steel (mass fraction, %)
Fig.2  Stress-strain curves of the X80 experimental steel at different coiling temperatures
Fig.3  Tensile properties of the X80 experimental steel at different coiling temperatures, (a) strength, (b) ductility
Coiling temperature/℃ 380 410 440 470 500
Rt0.5 /Rm 0.76 0.76 0.79 0.77 0.76
UA/% 9.2 10.4 12.2 12.1 12.9
n 0.14 0.13 0.12 0.14 0.16
Table 2  The yield ratio (Rt0.5 /Rm), uniform elongation (UA) and strain hardening index (n) of the X80 steel at different coiling temperatures
Fig.4  Impact toughness of the X80 experimental steel at different coiling temperatures
Fig.5  SEM images of X80 experimental steel at different coiling temperature, (a) 380℃, (b) 410℃, (c) 440℃, (d) 470℃, (e) 500℃
Fig.6  TEM images of carbide precipitation at higher coiling temperature, (a) 470℃, (b) 500℃
Coiling Temperature/℃ 380 410 440 470 500
Content of Bainite /% 88.2 86.6 85.8 84.8 83.9
Table 3  The bainite content of the experimental steel at different coiling temperature (%)
Fig.7  TEM images of bainite at typical coiling temperatures, (a) 380℃, (b) 410℃, (c) 440℃, (d) 500℃
Fig.8  Enlarged TEM images of bainite at typical coiling temperature, (a) 380℃, (b) 500℃
Fig.9  TEM image of carbides precipitation at coiling temperature of 470℃
Fig.10  TEM images of M/A at typical coiling temperature, (a) 380℃, (b) 440℃, (c) 500℃
Fig.11  Bright-field and dark-field images (a, b) and electron diffraction pattern (c) of M/A constituent at coiling temperature of 440℃
Fig.12  M/A content of X80 steel at different coiling temperatures
Fig.13  Bright-field and dark-field images (a, b) and electron diffraction pattern (c) of residual austenite at coiling temperature of 380℃
Fig.14  Bright-field and dark-field images (a, b) and electron diffraction pattern (c) of residual austenite at coiling temperature of 440℃
1 Nobuyuki Ishikawa,Mitsuhiro Okatsu, Ryuji Muraoka, Joe Kondo, Material development and strain capacity of grade X100 high strain linepipe produced by heat treatment online process, in: Proceedings of IPC2008 7th International Pipeline Conference, edited by ASME (Calgary, Alberta, Canada, 2008) p.1-8
2 Nobuyuki Ishikaka, Mitsuhiro Okatau, Shigeru Endo, Joe Kondo,Design concept and production of high deformability linepipe, in: Proceedings of IPC2006 6th International Pipeline Conference, edited by ASME ( Calgary, Alberta, Canada, 2006) p.2.
3 Toyohisa Shinmiya,Nobuyuki Ishikawa, Mitsuhiro Okatsu, Shigeru Endo, Nobuo Shikanai, Joe Kondo, Development of high deformability linepipe with resistance to strain-aged hardening by heat, in: Proceedings of the Sixteenth International Offshore and Polar Engineering Conference, edited by the International Society of Offshore and Polar Engineers(ISOPE) (Lisbon, Portugal, 2007), p.2963
4 Mitsuhiro Okatsu,Toyohisa Shinmiya, Nobuyuki Ishikawa, Shigeru Endo, Joe kondo, Development of high strength linepipe with excellent deformability, in:ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering (Halkidiki, Greece, 2006) p.170-176
5 Ryuji Muraoka, Joe Kondo, Production of grade X80 high strain linepipes for seismic region application, in: Proceedings of the 8th International Pipeline Conference (Calgary, Alberta, Canada, 2010) p. 56
6 Nobuyuki Ishikawa, Mitsuhiro Okatsu, Mass production and installation of X100 linepipe for strain-based design application, in: Proceedings of IPC2008 7th International Pipeline Conference (Calgary, Alberta, Canada, 2010) p. 64
7 G. A. Thomas J. G. Speer, D. K. Matlock,Quenched and partitioned microstructures produced via Gleeble simulations of hot-strip mill cooling practices, Metallurgical and Materials Transactions A, 42A, 3652(2011)
8 G. John, E. Speer, D.E. Moor, K.O. Findley, D.K. Matlock, B.C. DE. Cooman, D.V. Edmonds,Analysis of microstructure evolution in quenching and partitioning automotive sheet steel, Metallurgical and Materials Transactions A, 42A, 3591(2011)
9 GAO Huilin,ZHANG Xiaoyong, Research and development of large deformability pipeline steels, Welded Pipe and Tube, 37(4), 14(2014)
9 (高惠临, 张骁勇, 大变形管线钢的研究和开发, 焊管, 37(4), 14(2014))
10 M. J. Santofimia, L. Zhao, J. Sietsma,Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization, Metallurgical and Materials Transactions A, 40, 46(2009)
11 WANG Jianjun,JIAO Guipeng, LIU Yandong, LIU Chunming, Influence of quenching and partitioning process on microstructure and properties of a C-Si-Mn steel, Transactions of Materials and Heat Treatment, 34(3), 105(2013)
11 (王建军, 焦贵鹏, 刘沿东, 刘春明, Q&P热处理工艺对C-Si-Mn钢组织性能的影响, 材料热处理学报, 34(3), 105(2013))
12 GAO Huilin, Pipeline and Pipeline Steel (Beijing, China Petrochemical Press, 2012) p.8
13 FENG Yaorong, GAO Huilin, HUO Chunyong, Analysis and Identification of Microstructure of Pipeline Steel (Xi’an, Shaanxi Science and Technology Press, 2012) p.25-110
13 (p. 25-110)
14 YU Qingbo,SUN Ying, NI Hongxin, ZHANG Kaifeng, Effect of different bainitic microstructures on the mechanical properties of low-carbon steel, Journal of Mechanical Engineering, 45(12), 286(2009)
14 (于庆波, 孙 莹, 倪宏昕, 张凯峰, 不同类型的贝氏体组织对低碳钢力学性能的影响, 机械工程学报, 45(12), 286(2009))
15 SHANG Chengjia,YANG Shanwu, WANG Xuemin, HOU Huaxing, YU Gongli, WANG Wenzhong, Microstructure and mechanical properties of low carbon bainitic steel, Iron and Steel, 40(4), 59(2005)
15 (尚成嘉, 杨善武, 王学敏, 侯华兴, 于功利, 王文仲, 低碳贝氏体钢的组织类型及其对性能的影响, 钢铁, 40(4), 59(2005))
16 HAO Shiying,GAO Huilin, YAN Kaijuan, ZHANG Xiaoyong, JI Lingkang, LI Weiwei, Microstructure and mechanical properties of X80 pipeline steel with excellent deformability, Journal of Materials Engineering, (3), 65(2012)
16 (郝世英, 高惠临, 闫凯鹃, 张骁勇, 吉玲康, 李为卫, 一种大变形管线钢的组织-性能分析, 材料工程, (3), 65(2012))
17 TONG Ke,ZHUANG Chuanjing, LIU Qiang, HAN Xinli, ZHU Lixia, HE Xiaodong, Microstructure characteristics of M/A islands in high grade pipeline steel and its effect on mechanical properties, Materials for Mechanical Engineering, 35(2), 4(2011)
17 (仝 珂, 庄传晶, 刘 强, 韩新利, 朱丽霞, 何晓东, 高钢级管线钢中M/A岛的微观特征及其对力学性能的影响, 机械工程材料, 35(2), 4(2011))
18 ZENG Ming,HU Shuiping, ZHAO Zhengzhi, JIANG Haitao, WANG Zhe, Effects of process parameters on martensite-austenite island and mechanical properties of pipeline steel X100, Materials for Mechanical Engineering, 35(12), 29(2011)
18 (曾 明, 胡水平, 赵征志 江海涛, 王 哲, 工艺参数对X100管线钢中M-A岛和力学性能的影响, 机械工程材料, 35(12), 29(2011))
19 REN Yongqiang,SHANG Chengjia, ZHANG Hongwei, YUAN Shengfu, CHEN Erhu, Effect of retained austenite on toughness and plasticity of 0.23C-1.9Mn-1.6Si steel, Chinese Journal of Materials Research, 28(4), 274(2014)
19 (任勇强, 尚成嘉, 张宏伟, 袁胜福, 陈二虎, 0.23C-1.9Mn-1.6Si钢中的残余奥氏体对韧塑性的影响, 材料研究学报, 28(4), 274(2014))
20 WANG Ying,ZHANG Ke, GUO Zhenghong, CHEN Nailu, RONG Yonghua, A new effect of retained austenite on ductility enhancement of low carbon Q-P-T Steel, Acta Metallurgical Sinica, 48(6), 641(2012)
20 (王 颖, 张 柯, 郭正洪, 陈乃录, 戎咏华, 残余奥氏体增强低碳Q-P-T钢塑形的新效应, 金属学报, 48(6), 641(2012))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!