Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (10): 756-762    DOI: 10.11901/1005.3093.2014.124
Current Issue | Archive | Adv Search |
Effect of Loading Path on Fatigue Behavior of A319 Cast Aluminum Alloy
Dandan TIAN,Guoqiu HE(),Yue SHEN,Xiaoshan LIU,Kangle FAN,Defeng MO
School of Materials Science and Engineering, Tongji University, Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Shanghai 201804
Cite this article: 

Dandan TIAN,Guoqiu HE,Yue SHEN,Xiaoshan LIU,Kangle FAN,Defeng MO. Effect of Loading Path on Fatigue Behavior of A319 Cast Aluminum Alloy. Chinese Journal of Materials Research, 2014, 28(10): 756-762.

Download:  HTML  PDF(5444KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The fatigue behavior of A319 cast aluminum alloy was investigated in terms of its cycle stress response characters and fatigue life under a 0.2% strain amplitude with several loading paths, such as uniaxial, proportional and non-proportional ones. While the fracture characters of failed specimen and the cracking modes of Si particles were also investigated. Under the condition of same equivalent stress, the effectiveness of the three loading paths on the hardening of the alloy in terms of the degree and rate of hardening may be ranked in an order of high to low as follows: non-proportional > proportional > uniaxial, corresponding with the fatigue life exactly. The fractography of the alloy presented two major cracks with the herringbone pattern under the proportional loading. Additionally, the crack initiation site was gradually blurred when the loading path changing from uniaxial, to proportional and then to nonproportional ones, in the meanwhile the size of the crack initiation site and propagation region also decreased. The crack surface basically paralleled to the loading direction under uneasily loading, however, multi-cracks with different directions occurred under multi-axial loading.

Key words:  metallic materials      A319 cast aluminum alloy      loading path      fatigue properties     
Received:  19 March 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.124     OR     https://www.cjmr.org/EN/Y2014/V28/I10/756

Element Si Cu Mg Fe Mn Zn Ti Sr Ni Al
A319-Sr 6.4 3.1 0.37 0.52 0.31 0.53 0.04 0.016 0.02 Bal.
Table 1  Chemical composition of A319 alloy with Sr-modification (mass fraction, %)
Fig.1  Geometry of fatigue specimen (mm) (a) uniaxial loading, (b) multi-axial loading
Fig.2  Schematic diagram of multi-axial loading path
Fig.3  Microstructure of A319 aluminum alloy before (a) and after (b) Sr-modification
Material Young’s modulus /GPa Yield strength /MPa Tensile strength /MPa Elongation /%
A319 74.2 211 230 2
74.8 210 226 1.5
A319-Sr 75.1 220 253 2
75.0 218 242 1
Table 2  Mechanical properties of A319 before and after Sr-modification
Fig.4  Stress amplitude- number of cycles curves of A319 alloy with Sr-modification under different loading path (Δεt/2=0.2%)
Material Strain amplititude Loading path Fatigue life Average life
A319-Sr 0.2% Uniaxial 155930 148375
124873
164322
Proportional 44610 59482
65110
68726
Circle 5993 17232
12368
33336
Table 3  Fatigue life of A319 alloy with Sr-modification under different loading path Δεt/2 =0.2%
Fig.5  Fractography of the alloy under different loading path (Δεt/2 =0.2%) (a) tensile, (b) uniaxial, (c) proportional, (d) nonproportional, (e) tensile, (f) proportional
Fig.6  Initiation morphologies of fatigue cracks (Δεt/2 =0.2%) (a) uniaxial, (b) proportional, (c) nonproportional
Fig.7  Propagation morphologies of fatigue cracks (Δεt/2 =0.2%) (a) uniaxial, (b) proportional, (c) nonproportional
Fig.8  Damage morphologies of fatigue cracks (Δεt/2 =0.2%) (a) uniaxial, (b) proportional, (c) nonproportional
Fig.9  Fracture of Si particles near the main fracture surface (Δεt/2 =0.2%)
Fig.10  Effect of Si particle to crack initiation and propagation of A319 with Sr-modification (Δεt/2 =0.2%), (a) uniaxial, (b) proportional, (c) nonproportional, (d) amplification of Fig.(c)
Fig.11  Cracking modes of Si particles (Δεt/2 =0.2%) (a) uniaxial, (b) proportional, (c) nonproportional
1 K. Narayan,Prabhu, Review of Microstructure Evolution in Hypereutectic Al–Si Alloys and its effect on Wear Properties, Transactions of the Indian Institute of Metals, 67(1), 1(2013)
2 Y. X. Zhao, B. Zhang,Failure analysis on bearings of railway freight cars with radial bogie, Advanced Materials Research, 544, 286(2012)
3 Tong Gao, Yong-rui Zhang, Xiang-fa Liu, Complex modification effect by ZrAlSi intermetallic and element Sr on the microstructure and mechanical properties of hypereutectic Al–Si alloys, Journal of Alloys and Compounds, 589, 25(2014)
4 Lei Zeng, J. Sakamoto, A. Fujii, H. Noguchi, Role of eutectic silicon particles in fatigue crack initiation propagation fatigue strength characteristics of cast aluminum alloy A356, Engineering Fracture Mechanics, 115, 1(2014)
5 P. Das, R. Jayaganthan, T. Chowdhury, I. V. Singh,Fatigue behaviour and crack growth rate of cryorolled Al 7075 alloy, Materials Science and Engineering: A, 528(24), 7124(2011)
6 A. Fabrizi, S. Ferraro, G. Timelli, The influence of Sr, Mg and Cu addition on the microstructural properties of a secondary AlSi9Cu3 (Fe) die casting alloy, Materials Characterization, 85, 13(2013)
7 Miao Long, Yi-ping Lu, Yu-bo Zhang, Ying Fu, Ting-ju Li, Effect of ultrasonic treatment and Sr addition on microstructure of Al-20% Si alloy, China Foundry, 10(4)(2013)
8 L. Dietrich, J. Radziejewska. The fatigue damage development in a cast Al–Si–Cu alloy, Materials & Design, 2(1), 322(2011)
9 Guo-hua Zhang, Jian-xin Zhang, Bing-chao Li, Wei Cai, Double-stage hardening behavior and fracture characteristics of a heavily alloyed Al–Si piston alloy during low-cycle fatigue loading, Materials Science and Engineering A, 561, 26(2013)
10 K. S. Chan, Roles of microstructure in fatigue crack initiation, International Journal of Fatigue, 32(9), 1428(2010)
11 Y. Jang, S. Jin, Y. Jeong, S. Kim, Fatigue crack initiation mechanism for cast 319-T7 aluminum alloy, Metallurgical and Materials Transactions A, 40(7), 1579(2009)
12 M. Roy, Y. Nadot, D. M. Maijer, G. Benoit,Multiaxial fatigue behaviour of A356-T6, Fatigue & Fracture of Engineering Materials & Structures, 35(12), 1148(2012)
13 R. Pippan, H. Weinhandl,Discrete dislocation modelling of near threshold fatigue crack propagation, International Journal of Fatigue, 32(9), 1503(2010)
14 Li Wan, Zu-qi Hu, Shu-sen Wu, Xue-qiang Liu, Mechanical properties and fatigue behavior of vacuum-assist die cast AlMgSiMn alloy, Materials Science and Engineering A, 576, 252(2013)
15 Y. Xue, H. El Kadiri, M. F. Horstemeyer, J. B. Jordon, H. Weiland,Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy, Acta Materialia, 55(6), 1975(2007)
16 Guo-hua Zhang,Jian-xin Zhang, Bing-chao Li, Wei Cai, Characterization of tensile fracture in heavily alloyed Al-Si piston alloy, Progress in Natural Science: Materials International, 21(5), 380(2011)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!