Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (10): 745-750    DOI: 10.11901/1005.3093.2014.233
Current Issue | Archive | Adv Search |
Influence of Annealing Temperature on Electric Properties of CuIn1-xGaxSe2 Thin Films
Liangqi OUYANG,Ming ZHAO,Daming ZHUANG(),Rujun SUN,Li GUO,Xiaolong LI,Mingjie CAO
Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084
Cite this article: 

Liangqi OUYANG,Ming ZHAO,Daming ZHUANG,Rujun SUN,Li GUO,Xiaolong LI,Mingjie CAO. Influence of Annealing Temperature on Electric Properties of CuIn1-xGaxSe2 Thin Films. Chinese Journal of Materials Research, 2014, 28(10): 745-750.

Download:  HTML  PDF(2710KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The as-deposited CuIn1-xGaxSe2 (CIGS) thin films were fabricated by magnetron sputtering from a quaternary CIGS target, and then the as-deposited films were annealed in a temperature range from 240℃ to 550℃. The effect of the annealing temperature on the electric properties (carrier concentration and carrier mobility) of the films was investigated in particular. The results show that when the annealing temperature was lower than 270℃, the highly conducive CuSe phase existed in the films leading to a high carrier concentration (1017-1019 cm-3) and a low carrier mobility (~0.1 cm2V-1s-1). These films are not suited for CIGS absorber usage. When the annealing temperature was higher than 410℃, the carrier mobility of the films was high about 10 cm2V-1s-1 and the carrier concentration was in a range of 1014-1017 cm-3 due to the disappearance of the CuSe phase. When the annealing temperature was higher than 410℃, with the increase of the annealing temperature the grains grew larger and the crystallinity of the films was enhanced, which could reduce the defects in the films and result in the decrease of the carrier concentration. From the aspect of the carrier concentration and the carrier mobility, the appropriate annealing temperature for fabricating the absorbers of the CIGS solar cells is from 450℃ to 550℃.

Key words:  inorganic non-metallic materials      solar cells      CIGS      sputtering      electric property     
Received:  08 May 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.233     OR     https://www.cjmr.org/EN/Y2014/V28/I10/745

Base pressure/Pa Substrate temperature/℃ Working gas pressure/Pa Target power density / Wcm-2
2.0×10-3 200 0.7 0.70
Table 1  Sputtering parameters used for the deposition of CIGS
Fig.1  Effects of the annealing temperature on (a) the carrier concentration and (b) carrier mobility of the CIGS films
Fig.2  XRD patterns of CIGS films which were prepared at different annealing temperatures
Fig.3  Effects of the annealing temperature on the I1 FWHM and I2/I1 of the CIGS films
Fig.4  Raman spectra of CIGS films which were prepared at different annealing temperatures
Fig.5  Surface micrograph of (a) the as-deposited CIGS film and CIGS films which were annealed at (b) 240℃, (c) 270℃, (d) 340℃, (e) 410℃, (f) 450℃, (g) 510℃ and (h) 550℃
1 A. J. Zhou, D. Mei, X. G. Kong, X. H. Xu, L. D. Feng, X. Y. Dai, T. Gao, J. Z. Li,One-step synthesis of Cu(In, Ga)Se2 absorber layers by magnetron sputtering from a single quaternary target, Thin Solid Films, 520, 6068(2012)
2 P. Fan, J. R. Chi, G. X. Liang, X. M. Cai, D. P. Zhang, Z. H. Zheng, P. J. Cao, T. B. Chen,Fabrication of Cu(In, Ga)Se2 thin films by ion beam sputtering deposition from a quaternary target at different substrate temperatures, Journal of Materials Science-Materials in Electronics, 23, 1957(2012)
3 C. H. Chen, W. C. Shih, C. Y. Chien, C. H. Hsu, Y. H. Wu, C. H. Lai,A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In, Ga)Se2 absorbers without extra Se supply, Solar Energy Materials and Solar Cells, 103, 25(2012)
4 A. Chiril?, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A. N. Tiwari,Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells, Nature Materials, 12, 1107(2013)
5 P. Reinhard, S. Buecheler, A. N. Tiwari,Technological status of Cu(In, Ga)(Se, S)2-based photovoltaics, Solar Energy Materials and Solar Cells, 119, 287(2013)
6 J. A. Frantz, R. Y. Bekele, V. Q. Nguyen, J. S. Sanghera, A. Bruce, S. V. Frolov, M. Cyrus, I. D. Aggarwal,Cu(In, Ga)Se2 thin films and devices sputtered from a single target without additional selenization, Thin Solid Films, 519, 7763(2011)
7 J. H. Shi, Z. Q. Li, D. W. Zhang, Q. Q. Liu, Z. Sun, S. M. Huang,Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target, Progress in Photovoltaics, 19, 160(2011)
8 S. Puttnins, S. Levcenco, K. Schwarzburg, G. Benndorf, F. Daume, A. Rahm, A. Braun, M. Grundmann, T. Unold,Effect of sodium on material and device quality deposited Cu(In, Ga)Se2, Solar Energy Materials and Solar Cells, 119, 281(2013)
9 S. Niki, P. J. Fons, A. Yamada, Y. Lacroix, H. Shibata, H. Oyanagi, M. Nishitani, T. Negami, T. Wada,Effects of the surface Cu2-xSe phase on the growth and properties of CuInSe2 films, Applied Physics Letters, 74(11), 1630(1999)
10 J. F. Han, C. Liao, T. Jiang, H. M. Xie,Investigation of chalcopyrite film growth: an evolution of thin film morphology and structure during selenization, Journal of Materials Science-Materials in Electronics, 24, 4636(2013)
11 D. Liao, A. Rockett,Epitaxial growth of Cu(In, Ga)Se2 on GaAs (110), Journal of Applied Physics, 91(4), 1978(2002)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[13] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[14] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
No Suggested Reading articles found!