Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (9): 641-648    DOI: 10.11901/1005.3093.2014.126
Current Issue | Archive | Adv Search |
High Temperature Oxidation Performance of a Nb and Ti Stabilized 430 Ferritic Stainless Steel
Xunzeng HUANG,Yitao YANG()
School of Materials Science and Engineering, Shanghai University, Shanghai 200072
Cite this article: 

Xunzeng HUANG,Yitao YANG. High Temperature Oxidation Performance of a Nb and Ti Stabilized 430 Ferritic Stainless Steel. Chinese Journal of Materials Research, 2014, 28(9): 641-648.

Download:  HTML  PDF(7822KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High temperature oxidation performance of an Nb-Ti-stabilized 430 ferritic stainless steel (NTS430FSS) and SUS 430 ferritic stainless steel (SUS430FSS) was comparatively investigated by means of isothermal oxidation test, metallographic observation, scanning electron microscope (SEM) along with chemical microanalysis by energy dispersive spectrometry (EDS) and X-ray diffraction analysis. The results show that the oxidation weight gain was reduced for the steel with Nb and Ti addition. And the oxidation activation energies were 72.6 kJ/mol and 121.6 kJ/mol for the steel without and with Nb and Ti addition respectively. The adhesion between the oxide scale and matrix was enhanced by titanium oxide which dopped into the oxide scale. As a result, the Nb-Ti-stabilized 430 ferritic stainless steel exhibited better high temperature oxidation resistance.

Key words:  metallic materials      ferritic stainless steel      high temperature oxidation performance      Nb-Ti-stabilized      microstructure     
Received:  19 March 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.126     OR     https://www.cjmr.org/EN/Y2014/V28/I9/641

Material C N Mn Cr Ni Nb Ti Fe
NTS430FSS 0.017 0.013 0.218 16.9 0.115 0.0978 0.112 Bal.
SUS430FSS 0.071 0.042 0.198 16.2 0.235 -- -- Bal.
Table 1  Chemical composition of the investigated ferritic stainless steel (mass fraction, %)
Fig.1  Oxidation kinetics curves at 800℃, 900℃ and 1000℃, respectively
Fig.2  Thickness of oxide layer oxidized at 800℃, 900℃ and 1000℃ for 120 h
Sample kp/mgcm-2h-1 Q/kJ/mol
800℃ 900℃ 1000℃
NTS430FSS 2.75×10-4 3.8×10-3 4.3×10-2 121.6
SUS430FSS 2.84×10-4 2.138 7.49 72.6
Table 2  kp and oxidation activation energy Q of the two experimental steel at 800℃, 900℃ and 1000℃
Fig.3  SEM images of SUS430FSS (a-c) and NTS430FSS (d- f) oxidized at 800℃ (a, d), 900℃ (b, e) and 1000℃ (c, f) for 120 h
Fig.4  Microstructure of NTS430FSS (a-c) and SUS430FSS (d-f) of matrix (a, d) and oxide layer oxidized at 800℃ (b, e) and 1000℃ (c, f) for 120 h
Fig.5  EDS spectra of oxide particles on the surface of NTS430FSS (a) and SUS430FSS (b) oxidized for 120 h
Fig.6  XRD spectra of NTS430FSS after oxidation for 120 h at 800℃ (a), 900℃ (b) and 1000℃ (c)
Fig.7  XRD spectra of SUS430FSS after oxidation for 120 h at 800℃ (a), 900℃ (b) and 1000℃ (c)
Fig.8  SEM images of surface cross-section of NTS430FSS (a- c) and SUS430FSS (d- f) oxidized for 120 h at 800℃ (a, d), 900℃ (b, e) and 1000℃ (c, f)
Fig.9  EDS spectra of surface cross-section during 120 h at 1000℃
Fig.10  Schematic presentation of oxide coating (a) NTS430FSS-800℃×120 h, (b) NTS430FSS-1000℃×120 h, (c) SUS430FSS-800℃×120 h, (d) SUS430FSS-1000℃×120 h
1 ZHANG Hui,CUI Wenfang, WANG Jianjun, LIU Chunming, Effect of cerium on high temperature oxidation resistance of 00Cr17 ferritic stainless steel, Journal of the Chinese Rare Earth Society, 28(3), 366(2010)
1 (张 辉, 崔文芳, 王建军, 刘春明, 铈对00Cr17铁素体不锈钢高温抗氧化性的影响, 中国稀土学报, 28(3), 366(2010))
2 SHU Jun,BI Hongyun, LI Xin, XU Zhou, The effect of molybdenum addition on high temperature oxidation behavior at 1, 000℃ of type 444 ferritic stainless steel, Oxid. Met., 78, 253(2012)
3 YAN Haitao,BI Hongyun, LI Xin, XU Zhou, Precipitation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging, Materials Characterization, 60(3), 204(2009)
4 CHENG Xiaoying,WAN Xiaojing, SHEN Jianian, Oxidation behavior of a Ti-45Al-10Nb alloy at high temperature, Chinese Journal of Materials Research, 17(1), 50(2003)
4 (程晓英, 万晓景, 沈嘉年, Ti-45Al-10Nb合金的高温氧化行为, 材料研究学报, 17(1), 50(2003))
5 J. Rassizadehghani, H. Najafi, M. Emamy, G. EslamiSaeen,Mechanical properties of V-?, Nb-?, and Ti-?bearing As-?cast microalloyed steels, Journal of Materials Science & Technology, 23(6), 779(2007)
6 LI Tiefan, High Temperature Oxidation and Hot Compress of Metal, 2 (Beijing, The Press of Chemical Industry, 2004) p.215
6 李铁藩, 金属高温氧化和热腐蚀, 2 (北京, 化学工业出版社, 2004) p.215)
7 J. Mougin, M. Dupeux, L. Antoni,ALAIN Galerie, Adhesion of thermal oxide scales grown on ferritic stainless steels measured using the inverted blister test, Materials Science and Engineering, A, A359(1-2), 44(2003)
8 LI Meishuan, High Temperature Corrosion of Metal, 1 (Berijing, The Press of Metallurgical Industry, 2001) p.39
8 李美栓, 金属的高温腐蚀, 1 (北京, 冶金工业出版社, 2001) p.39
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!