Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (8): 615-620    DOI: 10.11901/1005.3093.2013.924
Current Issue | Archive | Adv Search |
Effect of Austenitizing on Texture Redistribution of Cold Drawn Pearlitic Steel Wire
Lichu ZHOU1,Yufei ZHAO1,Xianjun HU2,Lei WANG2,Fan LI1,Feng FANG1,**(),Jianqing JIANG1
1. School of Materials Science and Engineering, Southeast University, Nanjing 211189
2. Sha-steel Iron and Steel Research Institute of Jiangsu Province, Zhangjiagang 215625
Cite this article: 

Lichu ZHOU,Yufei ZHAO,Xianjun HU,Lei WANG,Fan LI,Feng FANG,Jianqing JIANG. Effect of Austenitizing on Texture Redistribution of Cold Drawn Pearlitic Steel Wire. Chinese Journal of Materials Research, 2014, 28(8): 615-620.

Download:  HTML  PDF(5727KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microstructure and texture of the as-drawn and the as annealed pearlitic steel wires were characterized by using SEM ( scanning electron microscopy) and EBSD ( electron backscatter diffraction) to reveal the effect of austenitizing process on the texture redistribution of the cold drawn pearlitic steel wire. The results show that the lamellar structure of the as-drawn pearlite steel wire turns to parallel to the drawing direction, forming ferrite <110> fiber texture. The intensity of the <110> texture rises with the rising strain of steel wires. After austenitizing heat treatment, the ferrite <110> fiber texture still remains in the wire, of which the intensity corresponds to the strain value of the as drawn wire. With the increasing of austenitizing temperature and time, the intensity of the ferrite <110> texture decreases. The ferrite <110> texture remains in the wire which has been cold drawn up to a strain value 2.2 and then annealed at 850℃ for 80 min.

Key words:  metallic materials      pearlitic steel wire      texture      EBSD      austenitizing heat treatment     
Received:  04 December 2013     
Fund: *Supported by National Nature Science Foundation of China Nos.51371050&51201031&51301038, and Natural Science Foundation of Jiangsu Province No.BK2011616.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.924     OR     https://www.cjmr.org/EN/Y2014/V28/I8/615

C Si Mn Cr V Ti S Fe
0.83 0.3 0.71 0.19 0.07 0.03 0.003 Bal.
Table 1  Composition analysis of experimental steels (%, mass fraction)
No. Diameter/mm Ture strain Area reduction/%
1 12 0 0
2 7.15 1.04 64.5
3 5.5 1.56 79.0
4 4.5 1.96 85.9
5 4.0 2.20 88.9
Table 2  Steel wire samples
Fig.1  SEM images of samples and images of texture (a) (b) SEM images of samples in the longitudinal section at strain 0 and 2.2; (c)(d) Inverse pole figure of samples at strain 0 and 2.2
Fig.2  SEM images of samples in the longitudinal section (a) ε=1.04, TA=850℃, t=10 min; (b) ε=2.2, TA=850℃, t=10 min; (c) ε=2.2, TA=790 ℃, t=10 min; (d) ε=2.2, TA=880℃, t=10 min; (e) ε=2.2, TA=850℃, t=80 min
Fig.3  Texture images of samples with different drawing strain (a) Texture intensity with the drawing strain; (b) (c) IPF images of samples with strain 1.04 and 2.2 after heat treatment
Fig.4  Texture images of samples austenitizing at different temperature (a) Texture intensity with the austenitizing temperature (b) (c) IPF images of samples austenitizing at 790℃, 880℃
Fig.5  Texture images of samples with different holding time (a) Texture intensity with the holding time; (b) (c) IPF images of samples treated for 10 min and 80 min
1 Michael Zelin,Microstructure evolution in pearlitic steels during wire drawing, Acta Materialia, 50, 4431(2002)
2 Y. J. Li, P. Choi, S. Goto, C. Borchers, D. Raabe, R. Kirchheim,Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3GPa hypereutectoid pearlitic steel wire, Acta Materialia, 60, 4005(2012)
3 Feng Fang,Yufei Zhao, Peipei Liu, Lichu Zhou, Xianjun Hu, Xufeng Zhou, Zonghan Xie, Deformation of cementite in cold drawn pearlitic steel wire, Materials Science and Engineering: A, 608, 11(2014)
4 J. Languillaume, G. Kapelski, B. Baudelet,Cementite dissolution in heavily cold drawn pearlitic steel wires, Acta Materialia, 45, 1201(1997)
5 Liu Yandong,Jiang Qiwu, Wang Gang, Yandong WANG, Tidu Liang, Influence of microstructures and textures on the torsional behavior of pearlitic wires, Journal of Materials Science and Technology, 21, 357(2005)
6 Y. Tomota, T. Suzuki, A. Kanie, Y. Shiota, M. Uno, A. Moriai, N. Minakawa, Y. Morii,In situ neutron diffraction of heavily drawn steel wires with ultra-high strength under tensile loading, Acta Materialia, 53, 463(2005)
7 Xiaodan Zhang,Andrew Godfrey, Niels Hansen, Xiaoxu Huang, Hierarchical structures in cold-drawn pearlitic steel wire, Acta Materialia, 61, 4898(2013)
8 F. Yang, C. Ma, J.Q. Jiang, H. P. Feng, S. Y. Zha,Effect of cumulative strain on texture characteristics during wire drawing of eutectoid steels, Scripta Materialia, 59, 850(2008)
9 F. Fang, X. J. Hu, S. H. Chen, Z. Xie, J. Q. Jiang,Revealing microstructural and mechanical characteristics of cold-drawn pearlitic steel wires undergoing simulated galvanization treatment, Materials Science and Engineering: A, 547, 51(2012)
10 WANG Lei,TU Yiyou, LI Fan, HUANG Haibo, Microtexture evolution of cold drawing high carbon steel wire, Journal of Southeast University (Natural Science Edition), 39, 131(2009)
10 (王 雷, 涂益友, 李 凡, 黄海波, 冷拔高碳钢丝织构演变分析, 东南大学学报: 自然科学版, 39, 131(2009))
11 YAO Xiaoyan,HUANG Haibo, LI Fan, Texture of cold drawn and recrystallized high carbon steel wire, Journal of Southeast University (Natural Science Edition), 40, 1323(2010)
11 (姚小燕, 黄海波, 李 凡, 冷拔高碳钢丝及其再结晶织构, 东南大学学报: 自然科学版, 40, 1323(2010))
12 I. Lischewski, G. Gottstein,Nucleation and variant selection during the ɑ→γ→ɑ phase transformation in microalloyed steel, Acta Materialia, 59, 1530(2011)
13 G. Bruckner, G. Gottstein,Transformation textures during diffusional a→γ→a phase transformations in ferritic steels, ISIJ International, 41, 468(2001)
14 G. Bruckner, J. Pospiech, I. Seidl, G. Gottstein,Orientation correlation during diffusional a→γ→a phase transformating in a-Ferrtic low carbon steel, Scripta Materialia, 44, 2635(2001)
15 T. Tomida, M. Wakitaa, M. Yasuyamaa, S. Sugayab, Y. Tomota, S. C. Vogelc,Memory effects of transformation textures in steel and its prediction by the double Kurdjumov–Sachs relation, Acta Materialia, 61, 2828(2013)
16 Feng Fang,Jinghua Jiang, ShuYong Tan, Aibin Ma, Jianqing Jiang, Characteristics of a fast low-temperature zinc phosphating coating accelerated by an ECO-friendly hydroxylamine sulfate, Surface and Coatings Technology, 204, 2381(2010)
17 ZHANG XiaoDan,Godfrey Andrew, LIU Wei, LIU QING, Evolutions of microstructure and ferritic micro-orientation and texture in a pearlitic steel wire during cold drawing, Acta Metallurgica Sinica, 46, 141(2010)
17 (张晓丹,Godfrey Andrew, 刘 伟, 刘 庆, 珠光体钢丝冷拉拔过程中微观组织及铁素体微区取向与织构演变, 金属学报, 46, 141(2010))
18 Y. D. Zhang, C. Esling, M. Calcagnotto, X. Zhao, L. Zuo,New insights into crystallographic correlations between ferrite and cementite in lamellar eutectoid structures, obtained by SEM-FEG/EBSD and an indirect two-trace method, Journal of Applied Crystallography, 40, 849(2007)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!