Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (7): 515-520    DOI: 10.11901/1005.3093.2013.612
Current Issue | Archive | Adv Search |
Influence of Composition of Ru-Cr Buffer Layers on Crystal Structure and Magnetic Property of Co-W Magnetic Films
Jianjun WANG1,2,**(),Chong GAO2,Chunming LIU1,2
1. Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819
2. School of Materials and Metallurgy, Northeastern University, Shenyang 110819
Cite this article: 

Jianjun WANG,Chong GAO,Chunming LIU. Influence of Composition of Ru-Cr Buffer Layers on Crystal Structure and Magnetic Property of Co-W Magnetic Films. Chinese Journal of Materials Research, 2014, 28(7): 515-520.

Download:  HTML  PDF(874KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thin films of magnetic alloy Co-15% W (atomic fraction) were deposited by DC magnetron sputtering on buffer layers of alloys Ru - x% Cr (atomic fraction, x=0, 20, 40) at 300℃, which were pre-deposited on a substrate of MgO(111) by the same process. The crystallographic structure of the films was examined by X-ray diffraction in terms of the epitaxial relationship between Co-W and Ru-Cr, the lattice parameters, the mosaic spread, the volume ratio of face centered cubic phase to hexagonal close-packed phase and the stacking fault densities. It was found that the lattice constant ratio c/a of hcp Co-W reduced with increasing Cr content x of Ru-Cr films due to the reduction of lattice misfit between Co-W magnetic films and Ru-Cr buffer layers. A clear correlation between the crystallographic structure and the magnetic anisotropy energy (MAE) of Co-W was confirmed, that is, the MAE was significantly enhanced with the reduction of c/a.

Key words:  metallic materials      Co-W magnetic film      X-ray diffraction      crystallographic structure      magnetic anisotropy energy     
Received:  26 August 2013     
Fund: *Supported by National Natural Science Foundation of China No. 50901016, the Fundamental Research Funds for the Central Universities No.N090402005, and the Scientific Research Foundation for Returned Scholars, Ministry of Education of China.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.612     OR     https://www.cjmr.org/EN/Y2014/V28/I7/515

Fig.1  X-ray diffraction patterns for (a) Co85W15 films (25 nm-in-thickness) with various Cr compostions in RuCr buffer layers and for (b) Co-W films with various thicknesses and Cr compositions
Fig.2  Rocking curves of Co85W15/Ru100-xCrx (x=20, 40) films (a), typical f scans for Co{101} and Ru {10·1} planes (c) of Co-W(002)/Ru(00·2)/MgO(111)
Fig.3  Volume ratio of fcc to hcp phases for Co85W15/Ru100-xCrx (x =0, 20, 40) films as functions of film thickness. The Inset is a contrast of fcc-Co(111) to hcp- Co(101) diffraction pattern of Co85W15/Ru80Cr20 thin film
Fig.4  Relationship between the stacking fault probabilities and the film thickness for Co85W15/Ru100-xCrx (x=20, 40) films
Fig.5  Axial ratio of Co85W15 for Co85W15/ Ru100-xCrx (x =0, 20, 40) films as functions of film thickness
Fig.6  Lattice misfit of a-axis between Co-W and Ru-Cr films
Fig.7  Magnetization of Co-W thin film with applied magnetic field (a) illustration of magnetization process; (b) typical magnetization curves for Co85W15/Ru80Cr20 (50 nm) films
Fig.8  Relationship of magnetic anisotropy constant Ku of Co85W15/Ru100-xCrx (x=0, 20, 40) films and the film thickness
1 ZENG Fanhao,GU Yi, HUANG Boyun, Research status and development tendency of Co-Cr based magnetic film materials, Materials Review, 22(5), 1(2008)
1 (曾凡浩, 古 一, 黄伯云, CoCr基磁性薄膜材料的研究现状和发展趋势, 材料导报, 22(5), 1(2008))
2 D. Weller, A. Moser, L. Folks, M. E. Best,W Lee, M. F. Toney, M. Schwickert, J. Thiele, M. F. Doerner, High Ku materials approach to 100 Gbits/in2, IEEE Transactions on Magnetics, 36, 10(2000)
3 N. Chowdhury, S. Bedanta, G. S. Babu,Study of magnetization reversal processes in a thin Co film, Journal of Magnetism and Magnetic Materials, 336, 20(2013)
4 QIN Gaowu, K. Oikawa,Thermodynamic considerations on development of ultra-high density magnetic recording media, Journal of Materials and Metallurgy, 4(2), 142(2005)
4 (秦高梧, 及川胜成, 超高密度磁记录介质研究的热力学基础, 材料与冶金学报, 4(2), 142(2005))
5 Cheng Gang,Gu Zhengfei, He Wei, Deng Ting, Effect of Pr on the structure and magnetic properties of CoPt alloys, Rare Metal Materials and Engineering, 41(2), 189(2012)
6 N. Kikuchi, O. Kitakami, S. Okamoto, Y. Shimada, A. Sakuma, Y. Otani, K. Fukamichi,Influence of 5d transition elements on the magnetocrystalline anisotropy of hcp-Co, Journal of Physics: Condensed Matter, 11, L485(1999)
7 J. J. Wang, Y. Tan, C. M. Liu, O. Kitakami,Crystal structures and magnetic properties of epitaxial Co–W perpendicular films, Journal of Magnetism and Magnetic Materials, 334, 119(2013)
8 K. Oikawa, G. W. Qin, M. Sato, S. Okamoto, O. Kitakami, Y. Shimada, K. Fukamichi, K. Ishida, T. Koyama,Direct observation of magnetically induced phase separation in Co-W sputtered thin films, Applied Physics Letters, 85, 2559(2004)
9 O. Hjortstam, K. Baberschke, J. M. Wills, B. Johansson, O. Eriksson,Magnetic anisotropy and magnetostriction in tetragonal and cubic Ni, Physical Review B, 55, 15026(1997)
10 T. Burkert, O. Eriksson, P. James, S.I. Simak, B. Johansson, L. Nordstr?m,Calculation of uniaxial magnetic anisotropy energy of tetragonal and trigonal Fe, Co, and Ni, Physical Review B, 69, 104426(2004)
11 T. Shimatsu, H. Sato, Y. Okazaki, H. Aoi, H. Muraoka, Y. Nakamura, S. Okamoto, O. Kitakami,Large uniaxial magnetic anisotropy by lattice deformation in CoPt∕ Ru perpendicular films, Journal of Applied Physics, 99, 08G908(2006)
12 J. J. Wang, T. Sakurai, K. Oikawa, K. Ishida, N. Kikuchi, S. Okamoto, H. Sato, T. Shimatsu, O. Kitakami,Magnetic anisotropy of epitaxially grown Co and its alloy thin films, Journal of Physics: Condensed Matter, 21, 185008(2009)
13 T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, Binary alloy phase diagrams, 2nd Ed.,(ASM International 2, 1990) p.1322
14 B. E. Warren, X-Ray Diffraction,(Dover, New York, 1990) p.172
15 D.B. Culity, Elements of X-Ray diffraction,(Addison-Wesley, London, 1978) p.236
16 Jr. W. J. Carr,Theory of ferromagnetic anisotropy, Physical Review, 108, 1158(1957)
17 T. Shimatsu, Y. Okazaki, H. Sato, H. Muraoka, H. Aoi, T. Sakurai, S. Okamoto, O. Kitakami, S. Tanii, A. Sakuma,Uniaxial magnetic anisotropy in Co and Co–Pt based perpendicular films in relation to lattice deformation, Journal of Applied Physics, 103, 07F524(2008)
18 F. Ono,Magnetic Field Dependence of the Magnetocrystalline Anisotropy Energy in hcp Co, Journal of the Physical Society of Japan, 50, 2564(1981)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!