Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (7): 481-489    DOI: 10.11901/1005.3093.2014.120
Current Issue | Archive | Adv Search |
On High Temperature Tensile Fracture Behavior of 316LN Austenitic Stainless Steel
Congfeng WU1,Shilei LI1,Hailong ZHANG1,Xitao WANG1,**(),Genqi WANG2
1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2. Yantai Taihai Marnoir Nuclear Equipment Co. Ltd., Yantai 264003
Cite this article: 

Congfeng WU,Shilei LI,Hailong ZHANG,Xitao WANG,Genqi WANG. On High Temperature Tensile Fracture Behavior of 316LN Austenitic Stainless Steel. Chinese Journal of Materials Research, 2014, 28(7): 481-489.

Download:  HTML  PDF(8282KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hot ductility, stress-strain behavior and high temperature tensile fracture behavior of wrought 316LN stainless steel were investigated. Hot tensile tests were carried out on a Gleeble 1500D thermal simulator system at a strain rate of 0.5 s-1 over the temperature range 650-1300℃. The percentage reduction of area (RA) decreased with the increasing deformation temperature over the range of 650-850℃, and then starting from 850℃, it began to increase dramatically with values over 85% above 1000℃. When the deformation temperature comes to 1300℃, RA decreased sharply as a result of the grain coarsening due to over-heating. With the help of optical microscopy, dynamic recrystallization (DRX) was observed for the steel deformed at temperature over 1000℃. The enhancement of ductility induced by DRX was considered to play an important role in inhibition of the crack propagation. The high temperature tensile failure process of 316LN includes the nucleation, growth, and aggregation of microscopic cavities. The SEM/EDS results show that the sulfide and alumina at grain boundaries may be responsible to the formation process of cracks.

Key words:  metallic materials      austenitic stainless steel      hot ductility      hot tensile      dynamic recrystallization      fracture behavior     
Received:  14 March 2014     
Fund: *Supported by National High Technology Research and Development Program of China No.2012AA03A507.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.120     OR     https://www.cjmr.org/EN/Y2014/V28/I7/481

C N Si Mn Cr Mo Ni P S Fe
0.01 0.12 0.24 1.30 17.18 2.23 13.12 0.019 0.003 Bal.
Table 1  Chemical composition of austenitic stainless steel 316LN (mass fraction, %)
Fig.1  Metallographic photograph (a) and grain size (b) of 316LN
Fig.2  True stress–strain curves at different deformation temperatures for wrought 316LN
Fig.3  Effect of hot tension temperature on the microstructures developed in the 316LN alloy, (a) 650℃, (b) 950℃, (c) 1000℃, (d) 1100℃, (e) 1150℃, (f) 1300℃
Fig.4  Variation of the average grain size of the 316LN alloy with deformation temperature
Fig.5  Difference between homogenous strain, εp, and fracture strain, εt, as a function of deformation temperature
Fig.6  Variation of tensile peak strength (a) and percentage reduction of area (b) with deformation temperature, and the macroscopic photograph of the fractures at different temperatures (c)
Fig.7  Metallographic photograph near the fracture of specimen tensioned at 1300℃
Fig.8  Characteristic curves of high temperature tensile for 316LN
Fig.9  Fracture morphologies of the 316LN tensile samples, (a) 650℃, (b) 750℃, (c) 850℃, (d) 950℃, (e) 1000℃, (f) 1100℃
Fig.10  EDS analysis of the particles in the dimple of the 316LN tensile samples, (a) 650℃, (b) 700℃, (c) 850℃, (d) 1100℃
Fig.11  Formation process of microvoids in the tensile samples of 316LN, (a) the schematic diagram of dimple formation, (b) the cavities near the fracture at 1000℃, (c) the cavities near the fracture at 850℃, (d) the cavities near the fracture at 1100℃
1 Wenhui Zhang,Shuhua Sun, Deli Zhao, Baozhong Wang, Zhenhua Wang, Wantang Fu, Hot deformation behavior of a Nb-containing 316LN stainless steel, Materials and Design, 32(8), 4173(2011)
2 A. A. Tavassoli,Assessment of austenitic stainless steels, Fusion Engineering and Design, 29, 371(1995)
3 H. Shaikh, T. Anita, R. K. Dayal, H. S. Khatak,Effect of metallurgical variables on the stress corrosion crack growth behaviour of AISI type 316LN stainless steel, Corrosion Science, 52(4), 1146(2010)
4 Zhang Xiuzhi,Zhang Yishuai, Li Yingjie,Liu Jiansheng, Cracking initiation mechanism of 316LN stainless steel in the process of the hot deformation, Materials Science and Engineering A, 559, 301(2013)
5 J. W. Simmons,Overview: high-nitrogen alloying of stainless steels, Materials Science and Engineering A, 207(2), 159(1996)
6 Frank Klannica,Gutti Rao, Reactor coolant loop seamless forged and formed pipe fabrication specification, APP-PL01-T1-001(2008)
7 SONG Shukang,LIU Zhiying, ZHENG Jianneng, DENG Lintao, CHEN Hongyu, The development of main pipe for the third-generation AP1000 nuclear power plant, Heavy Casting and Forging, 1, 1(2011)
7 (宋树康, 刘志颖, 郑建能, 邓林涛, 陈红宇, 第三代AP1000核电主管道的研制, 大型铸锻件, 1, 1(2011))
8 M. Yazdani, S. M. Abbasi, A. Momeni, A. Karimi Taheri,Hot ductility of a Fe-Ni-Co alloy in cast and wrought conditions, Materials and Design, 32(5), 2956(2011)
9 M. C. Mataya, E. R. Nilsson, E. L. Brown, G. Krauss,Hot working and recrystallization of as-cast 316L, Metallurgical and Materials Transactions A, 34(8), 1683(2003)
10 Jafari Meysam,Najafizadeh Abbas, Correlation between Zener–Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel, Materials Science and Engineering A, 501(1-2), 16(2009)
11 Ying Han,Guiwu Liu, Dening Zou, Rong Liu, Guanjun Qiao, Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression, Materials Science and Engineering A, 565, 342(2013)
12 T. Revaux, J. P. Bricout, J. Oudin,A new tensile testing procedure for predicting transverse cracking susceptibility of continuous casting slabs, Journal of Materials Engineering and Performance, 5(2), 260(1996)
13 LV Yan, Forging Forming Theory and Technology (Beijing, Mechanical Industry Press, 1991) p.46
13 (46)
14 REN Meng,LI Baohua, The mechanism and preventing method of cracking on the steel ingot, Heavy Casting and Forging, 3, 36(1992)
14 (任 猛, 李保华, 钢锭开裂的机理及防止方法, 大型铸锻件, 3, 36(1992))
15 CUI Yuexian, WANG Changli, Fracture Analysis of Metals (Harbin, Harbin Institute of Technology Press, 1998) p.39-40
15 (崔约贤, 王长利, 金属断口分析(哈尔滨, 哈尔滨工业大学出版社, 1998) p.39-40
16 ZHANG Yishuai,Analysis and process control of forging cracking for austenitic stainless steel 316LN, Master’s thesis, Taiyuan University of Technology (2011)
16 (张义帅,316LN不锈钢锻造裂纹分析及工艺控制, 硕士学位论文, 太原科技大学(2011))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!