Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (3): 185-190    DOI: 10.11901/1005.3093.2013.855
Current Issue | Archive | Adv Search |
Assembling of Polythiophene Derivative Nanostructures by Mixing Solvents
Wen WANG,Minmin SUN,Wei WANG,Minglu ZHOU,Luying LIANG,Qidan LING()
College of Materials Science and Engineering, Fujian Normal University, Fujian Key Laboratory of Polymer Materials, Fuzhou 350007
Cite this article: 

Wen WANG,Minmin SUN,Wei WANG,Minglu ZHOU,Luying LIANG,Qidan LING. Assembling of Polythiophene Derivative Nanostructures by Mixing Solvents. Chinese Journal of Materials Research, 2014, 28(3): 185-190.

Download:  HTML  PDF(2431KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The copolymer of polythiophene derivative (P3HT-co-P3AcET) containing alkyl and ester side chain was prepared by FeCl3 oxidative coupling copolymerization. The chemical structure of the resulted copolymer was characterized by GPC, 1H NMR, et al. The assembling of P3HT-co-P3AcET nanostructures was performed by mixing solvents, of which toluene was adopted as the good solvent, while dioxane or methanol as the poor solvent. The nanostructures of P3HT-co-P3AcET with different morphologies were obtained by adjusting the ratio of the mixed solvents and the aging time. The SEM results show that the assembling of P3HT-co-P3AcET tends to produce nanofiber bundles with dioxane as the poor solvent, and spherical nanoparticles with methanol as the poor solvent in the mixed solvents, respectively. For which a higher lipophilic value of dioxane rather than that of methanol may be responsible. The arrangement manner of the copolymer chains was analyzed by ultraviolet visible light absorption spectrum. The results show that the different arrangement manners of the copolymer chains can give rise to different morphologies in nanoscale, such as nanofiber bundles and spherical nanoparticles. Finally the mechanism concerning the formed nanostructures of the assembled copolymer was also preliminarily explored.

Key words:  organic polymer materials      polythiophene derivative      oxidative coupling      lipophilic value      nanofiber bundles      spherical nanoparticles     
Received:  13 November 2013     
Fund: *Supported by the National Natural Science Foundation of China Nos. 61250016 & 60976019, the Education Department Program of Fujian Province No.JA12069, and the Program for Innovative Research Team in Science and Technology in Fujian Province University No. IRTL1201.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.855     OR     https://www.cjmr.org/EN/Y2014/V28/I3/185

Fig.1  Synthetic route of P3HT-co-P3AcET
Fig.2  1H NMR spectra of P3HT-co-P3AcET
Fig.3  Cyclic voltammetric curve of P3HT-co-P3AcET
Fig.4  SEM images of P3HT- co-P3AcET film from toluene/dioxane mixed solvents after aging (a) low magnification, (b) high magnification
Fig.5  SEM images of P3HT-co-P3AcET film from toluene/methanol mixed solvents after aging (a) low magnification, (b) high magnification, (c) particle size distribution
Fig.6  UV- vis absorption spectra of P3HT- co-P3AcET in the toluene/dioxane (1∶5) solution and film after aging
Fig.7  Schematic illustration for assemble to nanofiber bundles of P3HT-co-P3AcET
1 Y. D. Park, S. G. Lee, H. S. Lee, D. H. Kwak, D. H. Lee, C. K. Cho,Solubility-driven polythiophene nanowires and their electrical characteristics, Journal of Materials Chemistry, 21(7), 2338(2011)
2 M. Brinkmann, E. Gonthier, S. Bogen, K. Tremel, S. Ludwigs, M. Hufnagel, M. Sommert,Segregated versus mixed interchain stacking in highly oriented films of naphthalene diimide bithiophene copolymers, ACS Nano, 6(11), 10319(2012)
3 Y. P. Qu, Q. Su, S. J. Li, G. H. Lu, X. Zhou, J. D. Zhang, Z. B. Chen, X. N. Yang,H-Aggregated Form II Spherulite of poly (3-butylthiophene) grown from solution, ACS Macro Letters, 1(11), 1274(2012)
4 H. J. Yamagata, C. M. Pochas, F. C. Spano,Designing J-and H-aggregates through wave function overlap engineering: applications to poly (3-hexylthiophene), Journal of Physical Chemistry B, 116(49), 14494(2012)
5 A. H. Rice, G. Giridharagopal, S. X. Zheng, F. S. Ohuchi, D. S. Ginger, C. K. Luscombe,Controlling vertical morphology within the active layer of organic photovoltaics using poly (3-hexylthiophene) nanowires and phenyl-C61-butyric acid methyl ester, ACS Nano, 5(4), 3132(2011)
6 E. T. Niles, J. D. Roehling, H. Yamagata, A. J. Wise, F. C. Spano, A. J. Moule?, J. K. Grey,J-aggregate behavior in poly-3-hexylthiophene nanofibers, Journal of Physical Chemistry Letters, 3(2), 259(2012)
7 J. K. Stille,The palladium-catalyzed cross-coupling Reactions of organotin reagents with organic electrophiles [new synthetic methods (58)], Angewandte Chemie International Edition in English, 25(6), 508(1986)
8 A. Suzuki,Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, Journal of Organometallic Chemistry, 576(1), 147(1999)
9 WANG Wei,LIANG Luying, ZHOU Minglu, SUN Minmin, WANG Wen, LING Qindan, Synthesis and properties of the crosslinkable poly(3-(2-(methacryloyloxy)ethyl)thiophene), Journal of Functional Polymer, 26(1), 88(2013)
9 (王 维, 梁露英, 周铭露, 孙敏敏, 王 文, 凌启淡,具有交联聚合活性的聚3-(2-(甲基丙烯酰氧基)乙基)噻吩的合成及其性能, 功能高分子学报, 26(1), 88(2013))
10 C. Burda, X. Chen, R. Narayanan, M. A. E1-Sayed,Chemistry and properties of nanocrystals of different shapes, Chemical Reviews, 105(4), 1025(2005)
11 Z. G. Yin, Q. D. Zheng,Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: An overview, Advanced Energy Materials, 2(2), 179(2012)
12 H. S. Chan, N. Choon,Synthesis, characterization and applications of thiophene-based functional polymers, Progress in Polymer Science, 23(7), 1167(1998)
13 R. D. Mccullough, R. D. Lowe, M. Jayaraman, D. L. Anderson,Design, synthesis, and control of conducting polymer architectures: structurally homogeneous poly(3-alkylthiophenes), Journal of Organic Chemistry, 58(4), 904(1993)
14 S. Samitsu, T. Shimomura, S. Heike, T. Hashizume, K. Ito,Effective production of poly(3-alkylthiophene) nanofibers by means of whisker method using anisole solvent: structural, optical, and electrical properties, Macromolecules, 41(21), 8000(2008)
15 WANG Yun,XIAO Lixin, CHEN Zhijian, QU Bo, GONG Qihuang, Enhanced voc in photovoltaic cell by electrodeposited polythiophene thin film, Spectroscopy and Spectral Analysis, 31(1), 7(2011)
15 (王 芸, 肖立新, 陈志坚, 曲 波, 龚旗煌, 电化学合成聚噻吩薄膜提高光伏电池的开路电压, 光谱学与光谱分析, 31(1), 7(2011))
16 K. Zhao, L. J. Xue, J. G. Liu, X. Gao, S. P. Wu, Y. C. Han, Y. H. Geng,A new method to improve poly(3-hexyl thiophene) (P3HT) crystalline behavior: decreasing chains entanglement to promote order-disorder transformation in solution, Langmuir, 26(1), 471(2010)
17 M. Antonietti, S. F?rster,Vesicles and liposomes: a self-assembly principle beyond lipids, Advanced Materials, 15(16), 1323(2003)
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[6] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[7] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[8] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[9] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[10] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[11] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[12] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[13] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[14] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
[15] HUANG Jian, LIN Chunxiang, CHEN Ruiying, XIONG Wanyong, WEN Xiaole, LUO Xin. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties[J]. 材料研究学报, 2020, 34(9): 674-682.
No Suggested Reading articles found!