Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (3): 191-196    DOI: 10.11901/1005.3093.2013.790
Current Issue | Archive | Adv Search |
Interface Remelting of Tungsten Carbide Particles Reinforced Steel Composite
Haoke HUANG,Zulai LI(),Quan SHAN,Yehua JIANG,Zhandong HOU
School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093
Cite this article: 

Haoke HUANG,Zulai LI,Quan SHAN,Yehua JIANG,Zhandong HOU. Interface Remelting of Tungsten Carbide Particles Reinforced Steel Composite. Chinese Journal of Materials Research, 2014, 28(3): 191-196.

Download:  HTML  PDF(2681KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A tungsten carbide particles reinforced steel matrix composite was fabricated by spark plasma sintering (SPS) technique, and then the composite was remelted in a vacuum tube furnace. The effect of remelting temperature on interface reaction was investigated meticulously. The results show that the interface reaction could occur when the matrix was still in solid state, the thickness of interface reaction layer increased with the increasing temperature. The interface reaction product, Fe3W3C, was resulted from the following two step reactions: firstly the reaction 2WC→W2C+C would occur within tungsten carbide particles at 1314℃, then the W2C would react with Fe to produce Fe3W3C at temperatures above 1341℃.

Key words:  composites      interface reaction      SPS      Fe3W3C      remelting     
Received:  20 October 2013     
Fund: *Supported by National Natural Science Foundation of China Nos. 51241002 & 51361019.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.790     OR     https://www.cjmr.org/EN/Y2014/V28/I3/191

Materials Mass fraction/%
C W Cu SO4 N Bal.
Iron powder - - 0.005 0.015 0.005 Fe
Tungsten carbide 3.7-4.0 95.96 - - - Residue
Table1  Nominal chemical composition of the powders
Maximum temperature / ℃ Heating Rate / ℃/min Pressure / kN Holding time / min
1000 100 9.4 5
Table2  Parameters of the spark plasma sintering (SPS)
Fig.1  Temperature variation curves of tube furnace
Fig.2  XRD spectrum of test samples under different temperatures
Fig.3  Microstructures of test samples under different temperatures, (a) unheated, (b) 1340℃, (c) 1360℃, (d) 1380℃
Fig.4  SEM of test samples under different temperatures, (a) unheated, (b) 1340℃, (c) 1380℃
Area Element/mass%
Fe W C
1 in Fig.4a - 97.81 2.19
2 in Fig.4a 94.20 5.77 0.03
1 in Fig.4b - 99.85 0.15
2 in Fig.4b 23.00 76.92 0.08
3 in Fig.4b 90.14 9.86 -
4 in Fig.4c - 99.85 0.15
5 in Fig.4c 21.11 78.82 0.07
6 in Fig.4c 91.48 8.52 -
Table3  EDS microanalysis in the composite
Fig.5  XRD spectrum of test samples processed by cast-infiltration
Fig.6  SEM of test samples by cast-infiltration
Area Element/mass%
Fe W C
1 in Fig.6 - 98.27 1.73
2 in Fig.6 21.09 77.78 1.13
3 in Fig.6 84.87 14.08 1.05
Table 4  EDS microanalysis in the composite
Fig.7  T DSC curves of ferrous powder (a), tungsten carbide powder (b) and mixture powder (c)
Fig.8  Change of ΔG of possible reaction with temperature in tungsten carbide
1 ZHAO Minhai,LIU Aiguo, GUO Mianhuan, Research on WC reinforced metal matrix composite, Welding & Joining, (11), 26(2006)
1 (赵敏海, 刘爱国, 郭面焕, WC颗粒增强耐磨材料的研究现状, 焊接, (11), 26(2006))
2 TIAN Zhiyu,Research and application of particle reinforced metal matrix composite material, Metal Materials And Metallurgy Engineering, 136(1), 3(2008)
2 (田治宇, 颗粒增强金属基复合材料的研究及应用, 金属材料与冶金工程, 36(1), 3(2008))
3 Izabel Fernanda Machado,Luca Girardini, Ivan Lonardelli, Alberto Molinari, The study of ternary carbides formation during SPS consolidation process in the WC–Co–steel system, Int. Journal of Refractory Metals & Hard Materials, 27, 883(2009)
4 Tokita M. Development of square-shaped large size WC/Co/Ni system FGM fabricated by spark plasma sintering (SPS)-method its industrial applications, Mater Sci Forum, 711(8), 492(2005)
5 Zhuhui Qiao, Xianfeng Ma, Wei Zhao, Huaguo Tang, Microstructure, thermal stability and mechanical properties of the novel (W1xAlx)C–Co (x = 0.2, 0.33, 0.4, 0.5) cemented carbide. Int J Refract Met Hard Mater, 27, 48(2009)
6 D Lou,J Hellman, D Luhulima, J Liimatainen, V. K Lindroos. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites, Mater Science Engineering, A340, 155(2003)
7 Fan Tongxiang, Shi Zhongliang, Zhang Di, The interfacial reaction characteristic in SiC/Al composite above liquidus during remelting. Materials Science and Engineering A, 2557, 281(1998)
8 OUYANG Liuzhang,LUO Chengping, LUO Zhuoxuan, SUI Xiandong, Study on Interface Characteristics of SiCp/ZL109 Aluminium Alloy Composites, Foundry, 3, 9(1999)
8 (欧阳柳章, 罗承萍, 骆灼旋, 隋贤栋, SiCp/ZL109复合材料界面研究, 铸造, 3, 9(1999))
9 LIU Zheng,LIU Xiaomei, Effects of interface on wear resistance of fiber reinforced aluminum-silicon alloy composites, Mining and Metallurgical Engineering, 23(3), 65(2003)
9 (刘 政, 刘小梅, 界面对纤维增强铝硅合金复合材料耐磨性的影响, 矿业工程, 23(3), 65(2003))
10 LIU Zheng,ZHOU Bide, PENG Delin, AN Geying, A study of the interface of short alumina fiber reinforced aluminium alloy composites, Acta Materiae Compositae Sinica, 8(4), 1(1991)
10 (刘 政, 周彼德, 彭德林, 安阁英, 氧化铝短纤维增强铝合金复合材料界面的研究, 复合材料学报, 8(4), 1(1991))
11 LIU Junyou,LIU Yingcai, LIU Guoquan, YIN Yansheng, SHI Zhongliang, Oxidation behavior of silicon carbide particales and their interfacial characterization in aluminum matrix composites, The Chinese Journal of Nonferrous Metals, 12(5), 961(2002)
11 (刘俊友, 刘英才, 刘国权, 尹衍升, 施忠良, SiC颗粒氧化行为及SiCp/铝基复合材料界面特征, 中国有色金属学报, 12(5), 961(2002))
12 LIU Junyou,SHI Zhongliang2, LIU Guoquan, GU Mingyuan, Lee Jae chul, Interfacial characteristics of aluminum matrix composites with oxidized SiCp articles as reinforcement, Journal of Chinese Electron Microscopy Society, 20(3), 206(2001)
12 (刘俊友, 施忠良, 刘国权, 顾明元, Lee Jae chul. 氧化的碳化硅颗粒增强铝-镁基复合材料的界面微结构特征. 电子显微学报, 20(3), 206(2001))
13 Arsenauil R.J,Shi N, Dislocation generation due to difference between the coefficient of thermal expansion, Materials Science and Engineering, 81, 175(1986)
14 Arsenauil R. J,Wang L, Strengthening of composites due to microstructural changes in the matrix, Acta Metall Mater, 39(1), 47(1991)
15 WEI Yonghui,SONG Yanpei, Wear resistance of in-situ synthesized Fe matrix composites, Special Casting & Nonferrous Alloys, 27(3), 229(2007)
15 (魏永辉, 宋延沛, 原位自生钢基复合材料耐磨性能的研究. 特种铸造及有色合金, 27(3), 229(2007))
16 ZENG Shaolian,LI Wei, WC Particle reinforced steel/iron matrix wear resistant composites, Special Casting & Nonferrous Alloys, 27(6), 441(2007)
16 (曾绍连, 李 卫, 碳化钨增强钢铁基耐磨复合材料的研究和应用. 特种铸造及有色合金, 27(6), 441(2007))
17 SONG Yanpei,LI Bingzhe, WANG Wenzhang, XIE Jingpei, ZHU Jingzhi, Investigation of WCp/Fe composite roller ring, Chinese Journal of Mechanical Engineering, 37(1), 99(2001)
17 (宋延沛, 李秉哲, 王文众, 谢敬佩, 朱景芝, WC颗粒增强铁基复合材料辊环的研究, 机械工程学报, 37(1), 99(2001))
18 LIANG Yingjiao, CHE Yinchang, Handbook of Thermodynamic Data for Inorganic Material, ShenYang, Northeastern University Press, 1993
18 (梁英教,车荫昌,无机物热力学数据手册, 沈阳, 东北大学出版社, 1993)
19 D. V. Suetin, I. R. Shein, A. L. Ivanovskii,Structural, electronic and magnetic properties of η carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations, Physica B, 404, 3544(2009)
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] HAO Jian, LIU Fang, YANG Shulin, YAO Xiaoyu, SUN Wenru. Effect of Melting Rate on Structure and Inclusions of GH4169G Alloy Ingot Fabricated by Argon Protected Electroslag Melting[J]. 材料研究学报, 2022, 36(11): 811-820.
[10] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[11] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[12] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[13] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[14] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[15] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
No Suggested Reading articles found!