Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (2): 88-92    DOI: 10.11901/1005.3093.2013.378
Current Issue | Archive | Adv Search |
Effect of Cooling Rate During Hot Punching on Property of High-performance 22MnB5 Steel Parts
Tao LIN1,Hongwu SONG1,Shihong ZHANG1,**(),Ming CHEN1,Weijie LIU2
1. Institute of Metal Research Chinese Academy of Sciences, Shengyang, 110016
2. Graduate School of Northeastern University, Shenyang, 110819
Cite this article: 

Tao LIN,Hongwu SONG,Shihong ZHANG,Ming CHEN,Weijie LIU. Effect of Cooling Rate During Hot Punching on Property of High-performance 22MnB5 Steel Parts. Chinese Journal of Materials Research, 2014, 28(2): 88-92.

Download:  HTML  PDF(4848KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of cooling rate during punching process on the microstructure and mechanical property of the 22MnB steel was investigated by three different processing conditions i.e. the processes with and without argon protection as well as a simulated industrial process. The results show that the cooling rates of all the hot punched parts with the three different processing conditions are higher than the critical cooling rate of 22MnB5 steel, thus the hot punched steels with a microstructure of lath martensite exhibit tensile stresses higher than 1500 MPa. When the temperature of hot punch tools is higher, an oxide scale appeared on the punched workpiece surface, thereby, the cooling rate and the mechanical property of the steel become lower, and the martensitic plate becomes thicker. The hot punched part with tensile strength about 1600 MPa and strength multiplied ductility c.a. 20, 000 MPa% was available by heating with argon protection while reducing the initial temperature of punch tools to ambient temperature. This is because the cooling rate of the punched part was high and thereby the martensite plates of the steel became fine for the process with protective gas.

Key words:  metallic materials      hot punching      gas-protection      cooling rate      strength multiplied ductility     
Received:  04 June 2013     
Fund: *Supported by National Nature Science Foundation of China No.51034009.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.378     OR     https://www.cjmr.org/EN/Y2014/V28/I2/88

Mat. C Si Mn Cr Ti B
22MnB 0.23 0.25 1.20 0.18 0.03 0.003
Table 1  Chemical compositions of test steel 22MnB (mass fraction, %)
Fig.1  Microstructure and dimension of blank, (a) Microstructure of as-delivered condition of 22MnB steel, (b) Dimension of the blank
Fig.2  Experimental apparatus in hot stamping (a) Schematic of gas-protection device for heated blank, (b) Hot stamping tools
Gas protection for the heated blank The temperature of the dies
Process 1 Yes Room Temperature
Process 2 No Room Temperature
Process 3 Yes 300℃
Table 2  Parameters of three kinds of processing
Fig.3  Hot stamped blank and the dimension of the tensile specimen, (a) Hot-stamped blank, (b) Dimension of the tensile specimen
Fig.4  Temperature history of hot-stamping blank
Fig.5  Mechanical properties of the three stamping workpieces (a) stress-strain cures of hot-stamped blank, (b) Vickers hardness
Fig.6  Microstructure of samples by the three hot stamping processes (a), (d) Process 1; (b), (e) Process 2; (c), (f) Process 3
Fig.7  Box-type part by the gas-protection hot stamping process (by Process 1(a)) and the not gas-protection hot stamping process (by Process 2(b))
1 H. Karbasian, A. E. Tekkaya,A review on hot stamping, Journal of Materials Processing Technology, 210(15), 2103-2118(2010)
2 M. Naderi, V. Uthaisangsuk, U. Prahl, W. Bleck,A numerical and experimental investigation into hot stamping of boron alloyed heat treated steels, Steel Research Int., 79(2), 77-84(2008)
3 WANG Cunyu,SHI Jie, HUI Weijun, CHEN Ying, ZHANG Yingjian, DONG Han, Process research on improving hot stamping steel ductility, Forging & Stamping Technology, 36(2), 128-130(2011)
3 (王存宇, 时 捷, 惠 卫, 军陈鹰, 张英建, 董 瀚, 提高热成形钢塑性的工艺研究, 锻压技术, 36(2), 128-130(2011))
4 M. Geiger, M. Merklein, C. Hoff,Basic investigations on the hot stamping steel 22MnB5, in: Processing of Sheet Metal 2005, M.Geiger. Editors, 2005: 795-802
5 K. Mori, S. Maki, Y. Tanaka,Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating, Annals of the CIRP, 54(1), 209–212(2005)
6 K. Mori, S. Saito, S. Maki,Warm and hot punching of ultra high strength steel sheet, Cirp Annals-Manufacturing Technology, 57(1), 321-324(2008)
7 A. Tmetta, S. Bruschi, A. Ghiotti. Investigation of 22MnB5 formability in hot stamping operations, Journal of Materials Processing Technology, 177(1/3), 396-400(2006)
8 Xing Zhongwen,Bao Jun, Yang Yuying, Zhong Chaoting, Hot stamping processing experiments of quenchable boron steel, Materials Science and Technology, 16(2), 172-175(2008)
8 (邢忠文, 包 军, 杨玉英, 钟朝廷, 可淬火硼钢板热冲压成形实验研究, 材料科学与工艺, 16(2), 172-175(2008))
9 Liu Wei,Liu Hongshen, Xing Zhongwen, Liu Gang, Bao Jun, Effect of tool temperature and punch speed on hot stamping of ultra-high strength steel, Transactions of Nonferrous Metals Society of China, 22(z2), s534-s541(2012)
10 Liu Hongsheng,Xing Zhongwen, Lei Chengxi, Hot formation quality of high strength steel BRl500HS for hot stamping without cooling system, Transactions of Nonferrous Metals Society of China, 22(z2), s542-s547(2012)
11 H. Hoffmann, H. So,H Steinbeiss, Design of hot stamping tools with cooling system, Annals of the CIRP, 56(1), 269-272(2007)
12 T Svec, M Grüner, M Merklein. FE-simulation of the heat transfer by defined cooling conditions during the hot stamping process, Key Engineering Materials, 473, 699-706(2011)
13 Jiang Chao,Shan Zhongde, Zhuan Bailiang, Rong Wenjuan, Zhang Milan, Microstructure and properties of hot stamping 22MnB5 steel, Transactions of Materials and Heat Treatment, 33(3), 78-81(2012)
13 (姜 超, 单忠德, 庄百亮, 戎文娟, 张密兰, 热冲压成形22MnB5钢板的组织和性能, 材料热处理学报, 33(3), 78-81(2012))
14 Lu Jun,Zeng Xiaoqin, Ding Wenjiang, The Hall-Petch relationship, Light Metals, 8, 59-64(2008)
14 (路 君, 曾小勤, 丁文江, 晶粒度与合金强度关系, 轻金属, 8, 59-64(2008))
15 S. Moritoa, H. Yoshidab, T. Makic, X. Huangd,Effect?of?block?size on?the?strength?of?lath martensite in low carbon steels, Material Science Engineering: A, 438-440, 237-240(2006)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!