Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (1): 15-22    DOI: 10.11901/1005.3093.2013.688
Current Issue | Archive | Adv Search |
Antibacterial Performance of 17-4PH Stainless Steel
Shuai WANG1,2,Zhijiang LU2,3,Chunguang YANG2,Minggang SHEN1,Ke YANG2,**()
1. School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3. School of Materials and Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094
Cite this article: 

Shuai WANG,Zhijiang LU,Chunguang YANG,Minggang SHEN,Ke YANG. Antibacterial Performance of 17-4PH Stainless Steel. Chinese Journal of Materials Research, 2014, 28(1): 15-22.

Download:  HTML  PDF(3890KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The antibacterial performance of 17-4PH stainless steel by different heat treatments was investigated. The results show that aging at 482℃ after cryogenic treatment at liquid nitrogen can effectively improve the antibacterial rate and hardness of 17-4PH steel, and the antibacterial rate increased with the increase of both aging temperature and aging time, but the hardness declined. The cryogenic treatment can promote the decomposition of the martensite, and then the dislocation density in 17-4PH steel become larger, which could increase the Cu-rich precipitations in the steel matrix and improve the antibacterial performance of the steel. An optimal antibacterial heat treatment procedure for 17-4 PH steel is recommended as solution treatment at 1040℃/0.5 h+cryogenic treatment/0.5h+aging at 482℃/6 h.

Key words:  metallic materials      17-4PH steel      antibacterial performance      Cu-rich precipitation      cryogenic treatment      hardness     
Received:  22 September 2013     
Fund: *Supported by National Key Basic Research and Development Program of China No. 2012CB619101, and National Natural Science Foundation of China No. 51371168.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.688     OR     https://www.cjmr.org/EN/Y2014/V28/I1/15

Fig.1  Photos of E. Coli colonies after antibacterial test, (a-h) corresponding to the sample a-h, respectively, (i) the reference substance
Number Heat treatment process Antibacterial rate
a 1040℃×0.5 h solution treatment, water cooling, 482℃×4 h aging treatment,air cooling 22.11%
b 1040℃×0.5 h solution treatment, water cooling, cryogenic treatment with liquid nitrogen for 0.5 h, 482℃×4 h aging treatment, air cooling 88.15%
c 1040℃×0.5 h solution treatment, water cooling, 482℃×6 h aging treatment,air cooling 95.23%
d 1040℃×0.5 h solution treatment, water cooling, cryogenic treatment with liquid nitrogen for 0.5 h, 482℃×6 h aging treatment, air cooling 99.58%
e 1040℃×0.5 h solution treatment, water cooling, 552℃×4 h aging treatment,air cooling 95.23%
f 1040℃×0.5 h solution treatment, water cooling, cryogenic treatment with liquid nitrogen for 0.5 h, 552℃×4 h aging treatment, air cooling 99.58%
g 1040℃×0.5 h solution treatment, water cooling, 552℃×6 h aging treatment, air cooling 99.94%
h 1040℃×0.5 h solution treatment, water cooling, cryogenic treatment with liquid nitrogen for 0.5 h, 552℃×6 h aging treatment, air cooling 99.99%
Table 1  Antibacterial rate against E. Coli after different heat treatments
Fig.2  Photos of E. Coli colonies after antibacterial test, (a-h) corresponding to the sample a-h, respectively, (i) the reference substance
Fig.3  TEM images of 17-4PH stainless steel, (a) 482℃ aging for 4 h, (b) 482℃ aging for 6 h, (c) 552℃ aging for 4 h, (d) 552℃ aging for 6 h
Fig.4  EDX spectra of precipitation (a) and matrix (b) in 17-4PH stainless steel (552℃ aging 4 h)
Element Precipitation Matrix
Fe 72.9 76.2
Cr Ni 15.1 4.1 15.1 3.9
Cu 7.8 4.0
Nb 0.1 0.2
Total 100.0 100.0
Table 2  Compositions of the precipitations and matrix in 17-4PH steel (mass fraction, %)
Fig.5  Variation of antibacterial rate against E. Coli with aging time (all samples without cold treatment)
Fig.6  Effect of cold treatment on antibacterial performance for 17-4PH stainless steel, (a) aging at 482℃, (b) aging at 552℃
Fig.7  XRD patterns of 17-4PH stainless steel
Fig.8  TEM micrographs for 17-4PH steel before (a) and after (b) cold treatment
Fig.9  Variation of hardness of 17-4PH with aging temperature (all samples without cold treatment)
Fig.10  Variation of hardness of 17-4PH with aging time (all samples without cold treatment)
Fig.11  Effect of cold treatment on hardness of 17-4PH stainless steel (a) aging at 482℃, (b) aging at 552℃
1 NF S94-090-2005,Medico-surgical Equipment-materials for Ancillary Positioning Instruments for Surgical Instrument - Martensitic, Precipitation Hardening, Austenitic and Austeno-ferritic S94-090-2005, Medico-surgical Equipment-materials for Ancillary Positioning Instruments for Surgical Instrument - Martensitic, Precipitation Hardening, Austenitic and Austeno-ferritic Stainless Steels, 2005
2 YANG Chunguang,WANG Shuai, REN Ling, NAN Li, LU Zhijiang, YANG Ke, An copper-bearing anti-bacterial precipitation-hardening stainless steel and heat treatment processes for surgical implants, Chinese Patent, 201210551878.5
2 (杨春光, 王 帅, 任 玲, 南 黎, 卢志江, 杨 柯, 一种外科手术用沉淀硬化马氏体不锈钢及其热处理工艺, 中国专利, 201210551878.5)
3 F. Heidenau, W. Mittelmeier, R. Detsch, M. Haenle, F. Stenzel, G. Ziegler, H. Gollwitzer,Anovel antibacterial titania coating: Metal ion toxicity and in vitro surface colomization, Journal of Materials Science: Materials in Medicine, 16, 883(2005).
4 L. Ren, L. Nan, K. Yang,Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel, Materials and Design, 32, 2374(2011))
5 L. Nan, W. C. Yang, Y. Q. Liu, H. Xu, Y. Li, M. Q. Lv, K. Yang,Antibacterial mechanism of copper-bearing antibacterial stainless steel against E. Coli, Journal of Materials Science & Technology, 24(2), 197(2008)
6 LIU Yongqian,Studies on martensitic antibacterial stainless steel, PhD thesis, Institute of Metal Research, Chinese Academy of Sciences (2008)
6 (刘永前, 马氏体抗菌不锈钢的研究, 博士学位论文, 中国科学院金属研究所(2008))
7 H. Mirzadeh, A. Najafizadeh,Aging kinetics of 17-4 PH stainless steel, Materials Chemistry and Physics, 116, 119(2009)
8 C. N. Hsiao, C. S. Chiou, J. R. Yang,Aging reactions in a 17-4 PH stainless steel, Materials Chemistry and Physics, 74, 132(2002)
9 D. A. Porter, K. E. Easterling, M. Y. Sherif, translated by L. Chen and Y. N. Yu, Phase Transformation in Metals and Alloys (Beijing, Higher Education Press, 2011)p.226
9 (226)
10 S. S. Gill, J. Singh, R. Singh, H. Singh,Metallurgical principles of cryogenically treated tool steels-a review on the current state of science, International Journal of Advanced Manufacturing Technology, 54, 59(2011)
11 E. Hornbogen, R. C. Glenn,A meta1lographic study of precipitation of copper from alpha iron, Transanction of Metallurgical Society of AIME, 218, 1064(1960)
12 A. J. Vimal, A. Bensely, D. M. Lal, K. Srinivasan,Deep cryogenic treatment improves wear resistance of En 31 steel, Materials and Manufacturing Processes, 23(4), 139(2008)
13 Y. Z. Zhu, Z. M. Yin, Y. Zhou, Q. F. Lei, W. S. Fang,Effects of cryogenic treatment on mechanical properties and microstructure of Fe-Cr-Mo-Ni-C-Co alloy, Journa of Central South University of Technology, 15, 454(2008)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!