Please wait a minute...
Chinese Journal of Materials Research  2013, Vol. 27 Issue (3): 331-337    DOI:
Original Article Current Issue | Archive | Adv Search |
Effect of Quenching Cooling Rate on the Toughness of 30CrMoNiV511 Steel for Steam Turbine Rotor
HUANG Junbo* HE Yi, HUO Jie, YIN Fuxing
(Materials Research Institute for Energy Equipment, China First Heavy Industries, Tianjin 300457)
Cite this article: 

HUANG Junbo, HE Yi, HUO Jie, YIN Fuxing. Effect of Quenching Cooling Rate on the Toughness of 30CrMoNiV511 Steel for Steam Turbine Rotor. Chinese Journal of Materials Research, 2013, 27(3): 331-337.

Download:  PDF(5167KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Quenching cooling at different radius positions of large-scale steam turbine rotor were simulated by air-cooling heat treatment furnace. The effects of quenching cooling rate on microstructure, strength and toughness of 30CrMoNiV511 rotor steel were investigated. The results show that the cooling rate has a little influence on the strength, while the toughness evidently depends on it. As the cooling rate decrease gradually from 50 ℃/min to 7 oC/min, and the transformed microstructure changes from low bainite to upper bainite, granular bainite and their mixture. Meanwhile, impact toughness decreases sharply from 66 J to 16 J. When the cooling rate is below 5 ℃/min, proeutectoid ferrite is formed. The sub-unit of ferrite in upper bainite is coarse with uneven distribution of carbides, which results in extremely low toughness. The microstructure and carbides shape and distribution depending on the quenching cooling rate is one of the main reasons determining the impact toughness of rotor steel.
Key words:  metallic materials      30CrMoNiV511 steel      quenching cooling rate      steam turbine rotor      impact toughness     
Received:  03 April 2013     
ZTFLH:  TG142  
About author:  *To whom correspondence should be addressed, Tel:  (022)59835572, E-mail:  alan198203@163.com

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2013/V27/I3/331

1 LIU Gaobo, Manufacturing process of 30CrMoNiV511 HP/IP rotor forgings, CFHI Technology, 3, 49(2012)
(刘高波, 30CrMoNiV511高中压转子锻件制造, 一重技术, 3, 49(2012))
2 TAO Kai, YU Shenjun, HAN Lu, YU Wenping, ZHAO Yongrang, WANG Jisheng, Development of turbing rotor materials, Materials Review, 26(1), 83(2012)
(陶 凯, 于慎君, 韩 璐, 于文平, 赵永让, 王继生, 汽轮机转子材料的研究进展, 材料导报, 26(1), 83(2012))
3 AN Yunzheng, PAN Jingda, FU Changpu, Microstructure Map of Turbogenerator Steel (Beijing, China Machine Press, 1997) p.50-53
(安运铮, 潘景达, 符长璞, 汽轮发电机用钢金相图谱(北京, 机械工业出版社, 1997) p.50-53)
4 SONG Chuanbao, JIN Jiayu, ZHANG Hao, Research for improving the impact toughness of 30CrMoNiV steel forgings, Heavy Casting and Forging, 2, 12(2001)
(宋传宝, 金嘉瑜, 张 皓, 提高30CrMoNiV钢大锻件冲击韧性的研究, 大型铸锻件, 2, 12(2001))
5 ZHANG Guoli, ZHANG Weidong, WANG Xiufeng, WANG Jinqiao, Research for improving impact toughness of B12N-S steel used for steam tubing rotor forgings, Heavy Casting and Forging, 4, 1(1999)
(张国利, 张卫东, 王秀峰, 王金桥, 提高汽轮机转子锻件B12N-S钢冲击韧性的研究, 大型铸锻件, 4, 1(1999))
6 SONG Chuanbao, XU Linda, ZHAO Lei, Research for improving the impact toughness and grains size of heavy 30Cr2MoV steel forgings, Heavy Casting and Forging, 2, 16(2002)
(宋传宝, 许林达, 赵 磊, 改善30Cr2MoV钢大锻件冲击韧性及晶粒度的研究, 大型铸锻件, 2, 16(2002))
7 M.Takahashi, H. Bhadeshia, A model for the microstructure of some advanced bainitic steels, Materials Transaction, JIM, 32(8), 689(1991)
8 H. Bhadeshia, L.E. Svensson, Modelling the evolution of microstructure in steel weld metal, in: Proceeding of Mathematical Modeling of Weld Phenomena, edited by H. Cerjak and K. E. Easterling (Institute of Materials, London, 1993) p. 109
9 SONG Chuanbao, JIN Jiayu, LIU Zhiying, GUO Peiliang, Technology research on heat treatment of improving grain size and homogeneity on 300MW low-pressure steam turbing rotor, Heavy Casting and Forging, 4, 34(1998)
(宋传宝, 金嘉瑜, 刘志颖, 郭培亮, 300MW汽轮机低压转子晶粒细化与均匀化的热处理工艺方法研究, 大型铸锻件, 4, 34(1998))
10 CHEN Qitang, Effect of microstructure on Impact toughness of steam turbine rotor steel, Heat Treatment of Metals, 10, 44(1981)
(陈启堂, 汽轮机转子热处理后显微组织对冲击韧性的影响, 金属热处理, 10, 44(1981))
11 GUO Peiliang, ZHAO Huijie, LI Jing, SU Xin, JIN Jiayu, Technology research on heat treatment of 30Cr1Mo1V steel rotor, Turbine Technology, 42(2), 119(2000)
(郭培亮, 赵慧杰, 李 静, 苏 昕, 金嘉瑜, 30Cr1MoV 钢转子锻件差异热处理工艺研究, 汽轮机技术, 42(2), 119(2000))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!