|
|
Effects of Rapid Thermal Annealing on Atomic–layer–deposition Pt Nanoparticles |
CHEN Hongbing, ZHU Bao, CHEN Sun, SUN Qingqing, DING Shijin, ZHANG Wei |
|
Cite this article:
CHEN Hongbing ZHU Bao CHEN Sun SUN Qingqing DING Shijin ZHANG Wei. Effects of Rapid Thermal Annealing on Atomic–layer–deposition Pt Nanoparticles. Chin J Mater Res, 2012, 26(3): 255-260.
|
Abstract Pt nanoparticles were prepared on Al2O3 films by atomic layer deposition using (MeCp)Pt(CH3)3 and O2 as precursors, and the effect of rapid thermal annealing (RTA) on the characteristics of Pt nanoparticles was investigated. The results show that as the annealing temperature rises from 700 to 900℃, Pt nanoparticles exhibit the increase of the dimensions and self-separation, a tendency to spherical growth, and a slight decrease in particle density. With increasing the annealing time from 15 s to 60 s at 800 !, Pt nanoparticles grow big gradually together with increscent dimension dispersion and a decreasing density. Therefore, it is concluded that the annealing at 800℃ for 15 s can achieve high density (9.29×1011cm−2), uniform and well–separated Pt nanoparticles. Moreover, when the annealing temperature is increased to 900℃, some Pt atoms are oxidized, which is likely due to the interfacial reaction between Pt and Al2O3.
|
Received: 08 February 2012
|
|
Fund: Supported by National Natural Science Foundation of China No.61076076, National Key Technologies R&D Program No.2009ZX02302-002, Program for New Century Excellent Talents in University No.NCET-08-0127. |
1 Z.T.Liu, C.Lee, V Narayanan, G.Pei, E.C.Kan, Metal nanocrystal memories–part Π: electrical characteristics, IEEE Trans. Electron Devices, 49(9), 1606(2002)2 T.H.Hou, C.Lee, V.Narayanan, U.Ganguly, E.C.Kan, Design optimization of metal nanocrystal memory–part II : gate-stack engineering, IEEE Trans. Electron Devices, 53(12), 3095(2006)3 M.Takata, S.Kondoh, T.Sakaguchi, H.Cho, J.C.Shim, H.Kurino, M.Koyanagi, New non-volatile memory with extremely high-density metal nano-dots, Int. Elec. Dev. Meet Tech. Dig., 553(2003)4 C.Lee, A.Gorur-Seetharam, E.C.Kan, Operational and reliability comparison of discrete-storage nonvolatile memories: advantages of single- and double-layer metal nanocrystals, Int. Elec. Dev. Meet Tech. Dig., 557(2003)5 J.J.Lee, D.L.Kwong. Metal nanocrystal memory with high-k tunneling barrier for improved data retention, IEEE Trans. Electron Devices, 52(4), 507(2005)6 J.J.Lee, Y Harada, J.W.Pyun, D.L.Kwong, Nickle nanocrystal formation on HfO2 dielectric for nonvolatile memory device applications, Appl. Phys. Lett., 86, 103505(2005)7 S.K.Samanta, W.J.Yoo, G.Samudra, E.S.Tok, L.K.Bera, N.Balasubramanian, Tungsten nanocrystals embedded in high-k materials for memory application, Appl. Phys. Lett., 87, 113110(2005)8 ZHANG Min, DING Shijin, CHEN Wei, ZHANG Wei, Progress in research and development of metal nanocrystal memories, Microelectronics, 37(3), 369(2007)(张 敏, 丁士进, 陈 玮, 张 卫, 金属纳米晶快闪存储器研究进展, 微电子学, 37(3), 369(2007))9 S.Novak, B.Lee, X.Y.Yang, V.Misra, Platinum nanoparticles grown by atomic layer deposition for charge storage memory applications, J. Electronchem. Soc., 157(6), H589(2010)10 P.K.Singh, G.Bisht, K.Auluck, M.Sivatheja, R.Hofmann, K.K.Singh, S. Mahapatra, Performance and reliability study of single-layer and dual-layer platinum nanocrystal Flash memory devices under NAND operation, IEEE Trans. Electron Devices, 57, 2029(2010)11 C.Lee, J.Meteer, V.Narayanan, E.C Kan, Self-assembly of metal nanocrystals on ultrathin oxide for nonvolatile memory applications, J. Electro. Matt., 34(1), 1(2005)12 H.Kim, S.Woo, H.Kim, S.Bang, Y.Kim, D.Choi, H.Jeon, Pt nanocrystals embedded in remote plasma atomic-layerdeposited HfO2 for nonvolatile memory devices, Electrochem. Solid-State Lett., 12(4), H92(2009)13 M.Yun, D.W.Mueller, M.Hossain, V.Misra, S.Gangopadhyay, Sub-2 nm size-tunable high-density Pt nanoparticle embedded nonvolatile memory, IEEE Electron Device Lett., 30, 1362(2009)14 R.C.Jeff, Jr, M.Yun, B.Ramalingam, B.Lee, V.Misra, G.Triplett, S.Ganopadhyay, Charge storage characteristics of ultra-small Pt nanoparticle embedded GaAs based nonvolatile memory, Appl. Phys. Lett., 99, 072104(2011)15 S.T.Christensen, J.W.Elam, B.Lee, Z.X.Feng, M.J.Bedzvk, M.C.Hersam, Nanoscale structure and morphology of atomic layer deposition platinum on SrTiO3(001), Chem. Mater., 21, 516(2009)16 M.Zhang, W.Chen, S.J.Ding, X.P.Wang, D.W.Zhang, L.K.Wang, Investigation of atomic-layer-deposition ruthenium nanocrystal growth on SiO2 and Al2O3 films, J. Vac. Sci. Technol. A, 25(4), 775(2007)17 T.Aaltonen, M.Ritala, T.Sajavaara, J.Keinonen, M.Leskela, Atomic layer deposition of platinum thin films, Chem. Mater., 15, 1924(2003)18 T.Aaltonen, A.Rahtu, M.Rital, M.Leskela, Reaction mechanism studies on atomic layer deposition of ruthenium and platinum, Electrochem. Solid-State. Lett., 6(9), C130(2003)19 C.Lee, U.Ganguly, V.Narayanan, T.H.Hou, J.Kim, E.C.Kan, Asymemetric electric field enhancement in naocrystal memories, IEEE Electron Device Lett., 26(12), 879(2005)20 M.She, T.J.King, Impact of crystal size and tunnel dielectric on semiconductor nanocrystal memory performance, IEEE Trans. Electron Devices, 50(9), 1934(2003)21 H.Tsuji, N.Arai, T.Matsumoto, K.Ueno, Y.Gotoh, K.Adachi, H.Kotaki, J.Ishikawa, Silver nanoparticle formation in thin oxide layer on silicon by silver-negative-ion implantation for Coulomb blockade at room temperature, Appl. Surf. Sci., 239(1-4), 132(2004)22 NIST X-ray Photoelectron Spectroscopy Database, Version 3.5, National Institute of Standards and Technology, Gaithersburg (2003)(http://www.srdata.nist.com/xps/)23 D.L.Hoang, S.A.-F.Farrage, J.Radnik, M.-M.Pohl, M.Schneider, H.Lieske, A.Martin, A comparative study of zirconia and alumina supported Pt and Pt-Sn catalysts used for dehydrocyclization of n-octane, Applied Catalysis: Gemeral, 333, 67(2007)24 W.Chen, M.Zhang, D.W.Zhang, S.J.Ding, J.J.Tan, M.Xu, X.P.Qu, L.K.Wang, Growth of high-density Ruand RuO2-composite nanodots on atomic-layer-deposited Al2O3 film, Appl. Surf. Sci., 253(8), 4045(2007) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|