|
|
Effect of the Partial Substitution of Co by Cu on the Properties of Ultrafine Cemented Carbide |
LIN Nan1, WU Chonghu2, ZHANG Duanfeng1, JIANG Yao1, HE Yuehui1 |
1.State key laboratory for powder metallurgy, Central South University, Changsha 410083
2.Xiamen golden egret special alloy company, Xiamen 361021 |
|
Cite this article:
LIN Nan WU Chonghu ZHANG Duanfeng JIANG Yao HE Yuehui. Effect of the Partial Substitution of Co by Cu on the Properties of Ultrafine Cemented Carbide. Chin J Mater Res, 2011, 25(6): 667-672.
|
Abstract Based on the same crystal structure and atomic structure of Cu and Co, coprecipitation method was taken to fabricate the ultrafine cemented carbide with Cu partly instead of Co. The effect of Cu on the properties of WC–10Co cemented carbide was investigated. The results show that with the addition of Cu by coprecipitation method, the Co(Cu) solid solution forms, and since Cu can distribute uniformly in WC–10Co during sintering,, the solubility of WC in binding phase decreases, the re–precipitation of dissolved WC particles can be hindered effectively, which results in the repression of WC grains growth, and the hardness of cemented carbide increases. The addition of element Cu can also play a role in solid solution strengthening of binding phase improving the transverse rupture strength of cemented carbide. When the Cu content is 1.5 wt%, cemented carbide can obtain the best mechanical properties with the hardness increasing from HRA92.6 to HRA 93.2 and the transverse rupture strength increasing from 2490 MPa to 2150 MPa.
|
Received: 26 July 2010
|
|
Fund: Supported by National Science Foundation for Distinguished Young Scholars of China No.50825102, National Science Foundation of China Nos.50823006 and 50721003. |
1 Z.X.Guo, J.Xiong, M.Yang, X.Y.Song, C.J.Jiang, Effect of Mo2C on the microstructure and properties of WC–TiC–Ni cemented carbide, International Journal of Refractory Metals and Hard Materials, 26, 601(2008)2 G.Ostberg, K.Buss, M.Christensen, S.Norgren, H.Andren, D.Mari, G.Wahnstrom, I.Reineck, International Journal of Refractory Metals and Hard Materials, 24, 145(2006)3 G.Gille, J.Bredthauer, B.Gries, B.Mende, W.Heinrich, Advanced and new grades ofWC and binder powder–their properties and application, International Journal of Refractory Metals and Hard Materials, 18(2), 87(2000)4 SUN Jing, YANG Jinghui, Research of adding RE in WC–20 (Fe/Co/Ni) Cemented Carbide, Powder metallurgy technology, 16(4), 267–269(1998)(孙景, 杨金辉, 添加稀土的WC--20(Fe/Co/Ni) 硬质合金的研究, 粉末冶金技术, 16(4), 267(1998))5 V.B.Voitovich, V.V.Sverdel, R.F.Voitovich, E.I.Golovko, Oxidation of WC–Co, WC–Ni and WC–Co–Ni hard metals in the temperature range 500–800oC, International Journal of Refractory Metals and Hard Materials, 14(4), 289(1996)6 L.M.Berger, S.Saaro, T.Naumann, M.Wiener, V.Weihnacht, S.Thiele, J. Such´anek, Microstructure and properties of HVOF–sprayed chromium alloyed WC–Co and WC–Ni coatings, Surface and Coatings Technology, 202(18), 4417(2008)7 H.C.Kim, I.J.Shon, J.K.Yoon, J.M.Doh, Z.A.Munir, Rapid sintering of ultrafine WC—-Ni cermets, International Journal of Refractory Metals and Hard Materials, 24, 427(2006)8 E.T.Nassaj, S.H.Mirhosseini, An in situ WC—Ni composite fabricated by the SHS method, Journal of Materials Processing Technology, 142, 422(2003)9 C.M.Fernandes, V.Popovich, M.Matos, A.M.R.Senos, M.T.Vieira, Carbide phases formed in WC–M(M=Fe/Ni/Cr) systems, Ceramics International, 35, 369(2009)10 I.F.Machado, L.Girardini, I.Lonardelli, A.Molinari, The study of ternary carbides formation during SPS consolidation process in theWC—Co—steel system, International Journal of Refractory Metals and Hard Materials, 27(5), 883(2009)11 HUANG Shi, YANG Jinghui, LAI Weihua, The effect of adding Cu on WC–13%Fe/Co/Ni Cemented Carbide, Powder metallurgy technology, 13(3), 174(1995)(黄石, 杨金辉, 赖为华, 添加Cu对WC--13\%Fe/Co/Ni硬质合金性能与组织的影响, 粉末冶金技术, 13(3), 174(1995))12 S.Lay, J.Thibault, T.S.Hamar, Structure and role of the interfacial layers in VC–rich WC–Co cermets, Philosophy Magazine, 83(10), 1175(2003)13 R.K.Sadangi, L.E.McCandlish, B.H.Kear, P.Seegopaul, Grain growth inhibition in liquid phase sintered nanophase WC/Co alloys, International Journal of Refractory Metals and Hard Materials, 35(1), 27(1999)14 H.R.Lee, D.J.Kim, N.M.Hwang, D.Y.Kim, Role of vanadium carbide additive during sintering of WC—Co: mechanism of grain growth inhibition, Journal American Ceramic Society, 86(1), 152(2003)15 A.H.Chokshi, A.Rosen, J.Karch, H.Gleiter, On the validity of the hall–petch relationship in nanocrystalline materials, Scripta Metallurgica, 23(10), 1679(1989)16 HU Gengxiang, CAI Xun, Materials science, (Shanghai, Shanghai Jiaotong University Press, 2000) p.203(胡赓祥, 蔡, 材料科学基础, (上海, 上海交通大学出版社, 2000) p.203)17 Lavergne, F.Robaut, F.Hodaj, C.H.Allibert, Mechanism of solid–state dissolution of WC in Co–based solutions, Acta Materialia, 50, 1683(2002)18 A.Yasinskaya, The wetting of refractory carbides, borides, and nitrides by molten metals, Powder Metallurgy and Metal Ceramics, 557(1966) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|