Please wait a minute...
Chin J Mater Res  2004, Vol. 18 Issue (6): 623-629    DOI:
Research Articles Current Issue | Archive | Adv Search |
FCC sheet earring based on rate--independent polycrystalline plasticity FEM
;;;
上海交通大学
Cite this article: 

;. FCC sheet earring based on rate--independent polycrystalline plasticity FEM. Chin J Mater Res, 2004, 18(6): 623-629.

Download:  PDF(1363KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on crystalline plasticity slip and strain hardening model, a rate-independent polycrystalline plasticity model was developed and introduced into finite element method. A “successive integration method” was firstly applied to the calculation of the plastic strain in large deformation analysis. By this method, it is easily to distinguish different resolved shear stresses and shear strain rate in different slip systems. The orientation distribution function is discretized by normal distribution function, and every FE integration points represent one crystal. Flanging earing tendencies with different initial orientations were discussed and verified by experiments. \{123\}$\langle$634$\rangle$ texture can lead to earing at 45$^{\circ}$ direction, while the \{100\}$\langle$001$\rangle$ texture at 0$^{\circ}$ and 90$^{\circ}$ directions. For the annealing aluminum sheet, the flange earing tendency is not obvious due to the balance between two main textures.
Key words:  foundational discipline in materials science      FCC sheet metal      polycrystalline plasticity FEM      rate-ind     
Received:  29 December 2004     
ZTFLH:  TG302  
  TG386  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2004/V18/I6/623

1 G.D.Koehlhoff, B.Krentscher, K.Lueche, Texture Development in a Cube Oriented Copper Single Crystal[A], in Proc. ICOTOM (the International Committee of Texture of Materials)7, Germany Kerhour, edited by C. M. Brackman (Netherlands Soc. for Mats. Sci., 1984) p.95
2 L.Anand, S.Balasubramanian, Annals of the CIRP, 45(1), 263(1996)
3 C.L.Xie, E.Nakamachi, Materials and Design, 23, 59(2002)
4 E.Nakamachi, C.L.Xie, M.Harimato, Int. J. of Mech. Sci., 43, 631(2001)
5 E.Nakamachi, K.Hiraiwa, H.Morimoto, M.Harimoto, Int. J. of Plas., 16, 1419(2000)
6 E.Nakamachi, X.Dong, Int. J. Computer-Aided Engrg. Software, 13, 308(1996)
7 E.Nakamachi, X.Dong, J. Appl. Mech. Trans. ASME(E), 64, 519(1997)
8 H.Takahashi, Bull. J. Soc. Mech. Eng., 19, 1115(1976)
9 D.Pierce, R. J.Asaro, A.Needleman, Acta Metall., 31, 1951(1983)
10 K.Lueke, J.Pospiech, K. H.Virnich, J.Jura, Acta. Metall., 29, 167(1981)
11 LI Dayong, HU Ping, WANG Jincheng, Chinese Journal of Applied Mechanics, 18(1), 58(2001) (李大永,胡平,王锦程,应用力学学报,18(1),58(2001))
12 LI Saiyi, ZHANG Xinming, Acta Metallurgica Sinica, 32, 884(1996) (李赛毅,张新明,金属学报,32,884(1996))
[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[6] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[7] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[8] Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. 材料研究学报, 2015, 29(9): 714-720.
[9] Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. 材料研究学报, 2014, 28(7): 509-514.
[10] Guiqin YU,Jianjun LIU,Yongmin LIANG. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. 材料研究学报, 2014, 28(6): 448-454.
[11] Xiaogang WANG,Yueyi LI,Hailan WANG,Cunlong ZHOU,Qinxue HUANG. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. 材料研究学报, 2014, 28(4): 308-313.
[12] Wu YAO,Mengxue WU,Yongqi WEI. Determination of Reaction Degree of Silica Fume and Fly Ash in a Cement - silica fume - fly ash Ternary Cementitious System[J]. 材料研究学报, 2014, 28(3): 197-203.
[13] Ruwu WANG,Jing LIU,Zhanghua GAN,Chun ZENG,Fengquan ZHANG. Crystallization Kinetics of Amorphous Alloys Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)[J]. 材料研究学报, 2014, 28(3): 204-210.
[14] Lei LI,Ke QIN,Haitao ZHANG,Zhihao ZHAO,Qingfeng ZHU,Yubo ZUO,Jianzhong CUI. Crystallographic Features of a Solidified Hypoeutectic Zn-4.45%Al Alloy[J]. 材料研究学报, 2014, 28(2): 126-132.
[15] Yanen WANG,Qinghua WEI,Mingming YANG,Shengmin WEI. Molecular Dynamics Simulation of Mechanical Properties and Surface Interaction for HA/NBCA[J]. 材料研究学报, 2014, 28(2): 133-138.
No Suggested Reading articles found!