Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (10): 721-733    DOI: 10.11901/1005.3093.2024.509
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of Electron Beam Welded Joints of Powder Metallurgy Alloy GH4099
MAO Huiping1,2, YANG Shu3, YANG Jia4, LU Zhengguan2, XU Lei2()
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
4 Beijing Institute of Power Machinery, Beijing 100074, China
Cite this article: 

MAO Huiping, YANG Shu, YANG Jia, LU Zhengguan, XU Lei. Microstructure and Mechanical Properties of Electron Beam Welded Joints of Powder Metallurgy Alloy GH4099. Chinese Journal of Materials Research, 2025, 39(10): 721-733.

Download:  HTML  PDF(26723KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Herein, Clean powders of pre-alloyed GH4099 alloy was firstly prepared via plasma rotating electrode process (PREP), which was subsequently consolidated into powder metallurgy alloy using hot isostatic pressing (HIP). The aquired powders exhibited a normal particle size distribution and good sphericity, whilst, the room and high temperature tensile properties of powder metallurgy alloy reach the level of the corresponding wrought alloy. Electron beam welding (EBW) was employed to join the powder metallurgy alloy, and the microstructure of the welded joints, both as-welded and heat-treated state, was characterized using optical microscopy (OM), scanning electron microscopy (SEM), and electron probe micro-analyzer (EPMA). Mechanical properties and residual stress distribution of the joints were also evaluated. The results indicated that heat treatment significantly enhanced the uniformity of the microstructure of the welded joints, promoted the precipitation of strengthening phases, and facilitated a more uniform distribution of elements, effectively reducing post-weld residual stress concentration at the same time. Both of two heat treatment procedures improved the hardness and room temperature tensile strength of the joints, bringing them close to the level of base metal, and also significantly improved the high-temperature ductility. Furthermore, a finite element model was established to predict the residual stress evolution for EMB joints of GH4099 powder metallurgy alloy. The simulation results were consistent with the measured stress distribution.

Key words:  metallic materials      GH4099 alloy      powder metallurgy      electron beam welding      heat treatment      residual stress     
Received:  25 December 2024     
ZTFLH:  TG441.8  
Fund: CAS Project for Young Scientists in Technology Innovation(RCJJ-145-24-39);Basic Research(YSBR-025);Science and Technology Major Project of Liaoning Province(2024JH1/11700027)
Corresponding Authors:  XU Lei, Tel: (024)83978843, E-mail: lxu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.509     OR     https://www.cjmr.org/EN/Y2025/V39/I10/721

Fig.1  Diagram of tensile specimen
AlTiCrCoNiMoWHON
2.171.3018.536.85Bal.3.825.910.00030.00550.0017
Table 1  Chemical composition of GH4099 pre-alloyed powder (mass fraction, %)
Fig.2  Morphology of GH4099 pre-alloyed powder (a) powder surface, (b) powder cross-section
Fig.3  Particle size distribution of GH4099 pre-alloyed powder
Fig.4  Microstructure of GH4099 powder alloy by hot isostatic pressing (a-c) and re-HIPed (d)
StateTemperature / oCσb/ MPaσp0.2/ MPaδ5/ %
Cold-rolled plateRT≤ 1130-35
900375-15
Hot-rolled bar(HT)RT103066525
900345-28
Forged bar (HT)RT980measure15
900637measure10
Table 2  Tensile properties of GH4099 deformed alloy materials[22]
Fig.5  Tensile properties of GH4099 powder alloy
Fig.6  Microstructure of welded joints (a) as welded, (b) ST+AT, (c) re-HIPed
StateGrain size (HAZ)Aspect ratio (WZ)
As welded57 μm6.9
ST+AT54 μm5.6
Re-HIPed56 μm6.3
Table 3  Average grain size of welded joints
Fig.7  SEM images of welded joints (a) as welded, (b) ST+AT, (c) re-HIPed
Fig.8  Element distribution of welded joints (a) as welded, (b) ST+AT, (c) re-HIPed
Fig.9  Hardness curve of welded joints in different states
Fig.10  Tensile properties of base metal and welded joints at room temperature and 900 oC (a) yield strength, (b) ultimate tensile strength, (c) elongation
Fig.11  Tensile fracture of welded joints at room temperature: (a) as welded, (b) ST+AT, (c) re-HIPed
Fig.12  Tensile fracture of welded joints at 900 oC (a) as welded, (b) ST+AT, (c) re-HIPed
Fig.13  Surface stress of welded joints in different states (a) upper surface-σx, (b) upper surface-σy, (c) lower surface-σx, (d) lower surface-σy
Fig.14  Mesh dividing (a) and (b) Gaussian heat source, (c) double ellipsoid heat source
Fig.15  Mechanical properties and thermal properties of GH4099 powder alloy
Heat sourcex / mmy / mmz / mmƒη
Gaussian5.55.5//0.3
Ellipsoid-front2.860.30.40.7
Ellipsoid-rear11.21.6
Table 4  Parameters of each heat source model
Fig.16  Experimental and simulated results of residual stress in welded joints: (a) upper surface-σx, (b) upper surface-σy, (c) lower surface-σx, (d) lower surface-σy
[1] Wang H L. Study on improving mechanical properties of GH99 alloy plate [J]. Spec. Steel Technol., 2006, 11(1): 30
王怀柳. 改善GH99合金板材力学性能的研究 [J]. 特钢技术, 2006, 11(1): 30
[2] Xu F, Song G X, Zheng C B, et al. Study on welding performance of GH4099/GH3230 dissimilar superalloys [J]. Hot Work. Technol., 2019, 48(5): 231
许 璠, 宋国新, 郑成斌 等. GH4099/GH3230异种高温合金焊接工艺性能研究 [J]. 热加工工艺, 2019, 48(5): 231
[3] Du J J, Jiang H T, Bu X Z, et al. Research on process of GH4099 superalloy wire and arc additive manufacturing [J]. New Technol. New Process, 2020, (8): 18
杜俊杰, 蒋海涛, 步贤政 等. GH4099高温合金电弧增材制造工艺研究 [J]. 新技术新工艺, 2020, (8): 18
[4] He Y H, Yu G Y, Zeng L J, et al. The influence of GH99 alloy composition and heat treatment control on properties [J]. Spec. Steel Technol., 1994, 1(4): 15
何云华, 喻桂英, 曾令军 等. GH99合金成分及热处理控制对性能的影响 [J]. 特钢技术, 1994, 1(4): 15
[5] Zhang H B. Hot deformation behavior and microstructure evolution of GH99 superalloy [D]. Harbin: Harbin Institute of Technology, 2015
张弘斌. GH99高温合金高温变形行为及组织演化规律研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
[6] Han W J, Byeon J G, Park K S. Welding characteristics of the Inconel plate using a pulsed Nd: YAG laser beam [J]. J. Mater. Process. Technol., 2001, 113(1-3): 234
[7] Janaki Ram G D, Venugopal Reddy A, Prasad Rao K, et al. Microstructure and mechanical properties of Inconel 718 electron beam welds [J]. Mater. Sci. Technol., 2005, 21(10): 1132
[8] Devendranath Ramkumar K, Sridhar R, Periwal S, et al. Investigations on the structure – property relationships of electron beam welded Inconel 625 and UNS 32205 [J]. Mater. Des., 2015, 68: 158
[9] He S C, Zhang T C, Guo D L. Normal mechanical property analysis of P/M Superalloy FGH96 inertia friction welding joint [J]. J. Aeronaut. Mater., 2006, 26(3): 122
何胜春, 张田仓, 郭德伦. 粉末高温合金FGH96惯性摩擦焊接头常温力学性能分析 [J]. 航空材料学报, 2006, 26(3): 122
[10] Wang L, Wu Y, Lü X, et al. Research on process of vacuum electron beam welding for GH4099 alloy baffle [J]. Weld. Technol., 2024, 53(8): 70
王 亮, 吴 勇, 吕 鑫 等. GH4099合金隔板真空电子束焊工艺探究 [J]. 焊接技术, 2024, 53(8): 70
[11] Li Y C, Chen D F, Zu Y, et al. Effect of post weld heat treatment on microstructure and residual stress in 16MND5 steel welded joint [J]. At. Energy Sci. Technol., 2021, 55(10): 1850
李映婵, 陈东风, 祖 勇 等. 焊后热处理对16MND5钢焊接组织结构与残余应力的影响 [J]. 原子能科学技术, 2021, 55(10): 1850
[12] Smith M, Levesque J B, Bichler L, et al. Residual stress analysis in linear friction welded in-service Inconel 718 superalloy via neutron diffraction and contour method approaches [J]. Mater. Sci. Eng., 2017, 691A: 168
[13] Smith M, Bichler L, Sediako D. Measurement of residual stresses in linear friction welded in-service Inconel 718 Superalloy [J]. Mater. Sci. Forum, 2016, 879: 1800
[14] Wang B, Zhou L, Du J G, et al. Analysis of residual stresses in electron beam welding with filler wire of Ti62A alloy [J]. J. Mater. Res. Technol., 2023, 23: 985
[15] Yan C Y, Li W S, Bai S W. Influence of welding parameters on residual stress in 9% Ni steel for low temperature service [J]. Adv. Mater. Res., 2010, 154-155: 1618
[16] Yin Y F, Lu Z G, Xu L, et al. Hot isostatic pressing of GH4099 alloy powders and preparation of thin-walled cylinders [J]. Chin. J. Mater. Res., 2024, 38(9): 669
尹一峰, 卢正冠, 徐 磊 等. GH4099合金粉末的热等静压成形和薄壁筒体的制造 [J]. 材料研究学报, 2024, 38(9): 669
[17] Zeng Y, Bu H Y, Chen L, et al. Introduction to the study of PPB problems in powder metallurgy superalloys prepared by direct HIP forming [J]. Trans. Mater. Heat Treat., 2023, 44(10): 10
曾 贇, 卜恒勇, 陈 璐 等. 直接HIP成型粉末高温合金中PPB问题研究的介绍 [J]. 材料热处理学报, 2023, 44(10): 10
[18] Chang L T. Preparation and hot isostatic press compaction of superalloy powder with less ceramic inclusions [D]. Shenyang: The University of Chinese Academy of Sciences, 2014
常立涛. 洁净高温合金粉末的制备及其热等静压工艺研究 [D]. 沈阳: 中国科学院大学, 2014
[19] Qin Z J, Liu C Z, Wang Z, et al. Formation and microstructure evolution of precipitation on prior particle boundaries in P/M nickel-base superalloys [J]. Chin. J. Nonferrous Met., 2016, 26(1): 50
秦子珺, 刘琛仄, 王 子 等. 镍基粉末高温合金原始颗粒边界形成及组织演化特征 [J]. 中国有色金属学报, 2016, 26(1): 50
[20] Zhang M D, Liu J T, Zhang Y W, et al. Discussion on mechanism of eliminating prior particle boundary in powder metallurgy superalloy [J]. Powder Metall. Ind., 2021, 31(2): 41
张梦迪, 刘建涛, 张义文 等. 消除粉末高温合金中原始颗粒边界机制 [J]. 粉末冶金工业, 2021, 31(2): 41
[21] Wang H, Wang Z Y, Song J M, et al. Effect of solution treatment on microstructure and properties of powder metallurgy GH4099 alloy [J]. Heat Treat. Met., 2022, 47(7): 86
王 华, 王泽钰, 宋嘉明 等. 固溶处理对粉末冶金GH4099合金组织及性能的影响 [J]. 金属热处理, 2022, 47(7): 86
[22] Academic Committee of the Superalloys, CSM. China Superalloys Handbook [M]. Beijing: China Quality Inspection Press, Standards Press of China, 2012: 601
中国金属学会高温材料分会. 中国高温合金手册 [M]. 北京: 中国质检出版社, 中国标准出版社, 2012: 601
[23] Zhang H, Sun T B, Yu M X. Study on fatigue property of electron beam welded joint of GH99 nickel-based alloy [J]. Eng. Test, 2014, 54(4): 26
张 航, 孙通伯, 于明玄. GH99镍基合金薄板电子束焊接头疲劳性能研究 [J]. 工程与试验, 2014, 54(4): 26
[24] Shao C, Liu H Y, Li J T, et al. Applications of hot isostatic pressing on cast superalloy [J]. Mater. Rev., 2012, 26(19): 121
邵 冲, 刘慧渊, 李俊涛 等. 热等静压在铸造高温合金领域的应用 [J]. 材料导报, 2012, 26(19): 121
[25] Ye C W, Zhang X H, Wang L, et al. Effect of re-HIPing on microstructure of HIPed TC4 alloy [J]. Trans. Mater. Heat Treat., 2013, 34(6): 99
叶呈武, 张绪虎, 王 亮 等. 二次热等静压对TC4合金组织的影响 [J]. 材料热处理学报, 2013, 34(6): 99
[26] Zhao Y M. Microstructure and properties of welding joints of powder metallurgy Inconel 718 alloy [D]. Hefei: University of Science and Technology of China, 2022
赵云梅. 粉末冶金Inconel 718合金焊接接头组织及性能研究 [D]. 合肥: 中国科学技术大学, 2022
[27] Ji Z H, Liu Y Q, Jia P, et al. Research status of welding performance of superalloys in aeroengine [J]. Hot Work. Technol., 2022, 51(15): 1
纪朝辉, 刘昱乾, 贾 鹏 等. 航空发动机高温合金焊接性能的研究现状 [J]. 热加工工艺, 2022, 51(15): 1
[28] Korsunsky A M, James K E. Residual stresses around welds in nickel-based superalloys [J]. J. Neutron Res., 2004, 12(1-3): 153
[29] Lü K M. Basic knowledge of residual stress determination—lecture no.4 stress determination method by x-ray (Ⅰ) [J]. Phys. Test. Chem. Anal., 2007, 43A(7): 349
吕克茂. 残余应力测定的基本知识——第四讲X射线应力测定方法(一) [J]. 理化检验, 2007, 43A(7): 349
[30] Lü K M. Basic knowledge of residual stress determination—lecture no.4 stress determination method by x-ray (Ⅱ) [J]. Phys. Test. Chem. Anal., 2007, 43A(8): 428
吕克茂. 残余应力测定的基本知识——第四讲X射线应力测定方法(二) [J]. 理化检验, 2007, 43A(8): 428
[31] Lü K M. Basic knowledge of residual stress determination—lecture no.4 stress determination method by x-ray (Ⅲ) [J]. Phys. Test. Chem. Anal., 2007, 43A(9): 462
吕克茂. 残余应力测定的基本知识——第四讲X射线应力测定方法(三) [J]. 理化检验, 2007, 43A(9): 462
[32] Mikami Y, Sogabe K, Hashimoto T, et al. Evaluation of residual stress distribution in Ni base alloy clad welds by numerical simulation and X-ray stress measurement [J]. Sci. Technol. Weld. Joining, 2013, 18: 114
[33] Zeng Z, Wang L J, Wang Y, et al. Numerical simulation of temperature distribution during discontinuous welding of 5A06 aluminum alloy [J]. J. Tianjin Univ., 2008, 41(7): 849
曾 志, 王立君, 王 月 等. 5A06铝合金间断焊温度场的数值模拟 [J]. 天津大学学报, 2008, 41(7): 849
[34] Ma Y. Study on numerical simulation of general expression of double ellipsoidal heat source model [D]. Tianjin: Hebei University of Technology, 2015
马 悦. 双椭球焊接热源模型一般式的数值模拟研究 [D]. 天津: 河北工业大学, 2015
[1] YANG Jingqing, DONG Wenchao, LU Shanping. Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] ZHAN Jie, CHEN Xiaojiang, ZOU Zhili, SU Xingdong, XIE Shiyu, JIANG Liang, WANG Jinling, WANG Lielin. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] SHI Yuanji, CHENG Cheng, ZHANG Haitao, HU Daochun, CHEN Jingjing, LI Junwan. Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] WANG Mingyu, LI Shujun, HE Zhenghua, TANG Mingde, ZHANG Siqian, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] ZHANG Wei, ZHANG Bing, ZHOU Jun, LIU Yue, WANG Xufeng, YANG Feng, ZHANG Haiqin. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] LIU Endian, BAI Yu, LI Jiawen, HAO Hai. Preparation of Bi-continuous Interpenetrating Porous Composite and Its Heat Treatment Enhancement[J]. 材料研究学报, 2025, 39(7): 481-488.
[11] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[12] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[13] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[14] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[15] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
No Suggested Reading articles found!