Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (10): 734-742    DOI: 10.11901/1005.3093.2024.399
ARTICLES Current Issue | Archive | Adv Search |
Hot Deformation Behavior of Al-7.2Zn-3.8Mg Alloy
LI Qingqian1,2, LIU Shengdan1,2(), JIANG Keda1,3, FAN Shitong3, ZHAO Shourong3
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Key Laboratory of Non-Ferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
3 Taishan City Kam Kiu Aluminium Extrusion Co. , Ltd. , Taishan 529261, China
Cite this article: 

LI Qingqian, LIU Shengdan, JIANG Keda, FAN Shitong, ZHAO Shourong. Hot Deformation Behavior of Al-7.2Zn-3.8Mg Alloy. Chinese Journal of Materials Research, 2025, 39(10): 734-742.

Download:  HTML  PDF(16184KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hot deformation behavior of Al-7.2Zn-3.8Mg alloy was studied via gleeble thermal simulation tester by deformation rate of 0.01-0.1 s-1 in temperature range 400-460 oC (lnZ range is 31.1 to 36.6) and then the constitutive equation was constructed. Meanwhile, the microstructure of the alloy was examined by electron backscatter diffraction technique and the dynamic softening mechanism was discussed. The results show that the activation energy of hot deformation of the alloy is 217.702 kJ/mol in the setting range of compression parameters and dynamic recovery is dominant softening mechanism. Dynamic recrystallization occurs at lnZ 34.3, and the recrystallization fraction decreases with the increase of lnZ; within this range, the mechanism includes continuous dynamic recrystallization and discontinuous dynamic recrystallization, and with the decrease of lnZ, the continuous dynamic recrystallization characteristics are more obvious; the geometric dynamic recrystallization appears for 31.1 lnZ 32.1.

Key words:  metallic materials      Al-Zn-Mg alloys      constitutive equation      microstructure      dynamic softening mechanism     
Received:  29 September 2024     
ZTFLH:  TG146.2  
Fund: 2023 Provincial Science and Technology Innovation Strategy Project of Guangdong Jiangmen(2023780200080009576)
Corresponding Authors:  LIU Shengdan, Tel: (0731)88830265, E-mail: lsd_csu@csu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.399     OR     https://www.cjmr.org/EN/Y2025/V39/I10/734

ElementZnMgMnCuFeSi
Content7.173.770.150.400.10.05
Table 1  Chemical compositions of Al-Zn-Mg alloy used for experiment (mass fraction, %)
Fig.1  Stress-strain curves of Al-Zn-Mg alloy (a) 0.1 s-1; (b) 0.05 s-1; (c) 0.01 s-1
Fig.2  Relationship of lnε˙-lnσ, lnε˙-σ, lnsinhασ-lnε˙ and lnsinhασ-1/T (a) lnε˙-lnσ; (b) lnε˙-σ; (c) lnsinhασ-lnε˙; (d) lnsinhασ-1/T
Rate / s-1Temperature
400 oC420 oC440 oC460 oC
0.136.635.534.433.7
0.0535.934.833.733.1
0.0134.333.232.131.1
Table 2  lnZ of each hot deformation parameter of Al-7.2Zn-3.8Mg alloy
Fig.3  Microstructure of the uncompressed sample (a) IPF image, (b) misorientation distribution image, (c) grain boundary image
Fig.4  IPF images and misorientation distribution at different temperatures under strain rate of 0.01 s-1 (a, d) 460 oC; (b, e) 440 oC; (c, f) 400 oC
Fig.5  IPF images and misorientation distribution of the sample deformed at 460 oC with strain rate of 0.05 s-1 (a) IPF image, (b) misorientation distribution image
Fig.6  Recrystallization distribution of Al-7.2Zn-3.8Mg alloy at different lnZ levels (a) lnZ = 36.6; (b) lnZ = 34.3; (c) lnZ = 33.1; (d) lnZ = 32.1; (e) lnZ = 31.1
Fig.7  Relationship curves between Xdrx and lnZ
Fig.8  Grain boundary images and GND images under different lnZ (a, d) lnZ = 33.1; (b, e) lnZ = 32.1; (c, f) lnZ = 31.1
Fig.9  Schematic of two dynamic recrystallization evolutionary mechanisms (a) DDRX; (b) CDRX
[1] Li S S, Yue X, Li Q Y, et al. Development and applications of aluminum alloys for aerospace industry [J]. J. Mater. Res. Technol., 2023, 27: 944
[2] Atxaga G, Arroyo A, Canflanca B. Hot stamping of aerospace aluminium alloys: automotive technologies for the aeronautics industry [J]. J. Manufactur. Process., 2022, 81: 817
[3] Gan G Q, Li P, Xue K M. Research progress on hot stamping process of high strength aluminum alloy plates for automotive parts [J]. Chin. J. Rare Met., 2024, 48: 564
甘国强, 李 萍, 薛克敏. 汽车件高强铝合金板件热冲压工艺研究进展 [J]. 稀有金属, 2024, 48: 564
[4] Li Z Q, Jiao J F, Liu X W. Research status and development trends of mechanical performance of 7-series high strength aluminum alloy [J]. Build. Struct., 2023, 53(Suppl. 2): 1215
李志强, 焦燏烽, 刘小蔚. 7系高强铝合金力学性能研究现状及发展趋势 [J]. 建筑结构, 2023, 53(增刊2): 1215
[5] Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. Chin. J. Nonferrous Met., 2019, 29(9): 2115
邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29(9): 2115
[6] Qiu X T. Study on microstructure and properties of high strength aluminum alloys for 3C product shells [D]. Nanjing: Southeast University, 2019
邱馨婷. 3C产品壳体用高强铝合金组织和性能的研究 [D]. 南京: 东南大学, 2019
[7] Wu Y M, Jiang K D, Liu S D, et al. Hot compression deformation behavior of 6013 aluminum alloy by low lnZ [J]. Chin. J. Mater. Res., 2024, 38(5): 337
伍英明, 姜科达, 刘胜胆 等. 低lnZ条件下6013铝合金的热压缩变形行为 [J]. 材料研究学报, 2024, 38(5): 337
[8] Xue J, Wang Y W, Zhang Z H, et al. Effects of extrusion temperature on dynamic recrystallization, aging microstructure and mechanical properties of Al-Zn-Mg-Cu alloy [J]. Chin. J. Nonferrous Met., 2017, 27(11): 2204
薛 杰, 王有为, 张志豪 等. 挤压温度对Al-Zn-Mg-Cu合金动态再结晶、时效组织和力学性能的影响 [J]. 中国有色金属学报, 2017, 27(11): 2204
[9] Deng Y L, Wang Y F, Lin H Q, et al. Effect of extrusion temperature on strength and fracture toughness of an Al-Zn-Mg alloy [J]. Chin. J. Mater. Res., 2016, 30(2): 87
邓运来, 王亚风, 林化强 等. 挤压温度对Al-Zn-Mg合金力学性能的影响 [J]. 材料研究学报, 2016, 30(2): 87
[10] Chou P, Wang J Y, Duan X G, et al. Study on hot deformation behavior and microstructure evolution mechanism of AA7021 aluminum alloy [J]. Mater. Rep., 2020, 34(4): 8106
仇 鹏, 王家毅, 段晓鸽 等. AA7021铝合金热变形行为及微观组织演变机理的研究 [J]. 材料导报, 2020, 34(4): 8106
[11] Zheng X, Tang J G, Wan L, et al. Hot deformation behavior of alloy AA7003 with different Zn/Mg ratios [J]. Metals, 2022, 12: 1452
[12] Qu S Y, Li M, Lv Z F, et al. Hot deformation constitutive equation and hot processing map of novel Al-Zn-Mg aluminum alloy for automobile body [J]. J. Plast. Eng., 2020, 27(9): 161
曲世永, 李 民, 吕正风 等. 车身用新型Al-Zn-Mg铝合金热变形本构方程及热加工图 [J]. 塑性工程学报, 2020, 27(9): 161
[13] Wu H, Wen S P, Huang H, et al. Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy [J]. J. Alloy. Compd., 2016, 685: 869
[14] Zhang J L, Han B Z, Shen G W, et al. Hot deformation behavior and microstructural evolution of a new type of 7xxx Al alloy [J]. Mater. Today Commun., 2024, 41: 110218
[15] He Z B, Li H Z, Liang X P, et al. Hot deformation behavior and processing map of Al-Zn-Mg-Sc-Zr alloy [J]. Chin. J. Nonferrous Met., 2011, 21(6): 1220
何振波, 李慧中, 梁霄鹏 等. Al-Zn-Mg-Sc-Zr合金的热变形行为及加工图 [J]. 中国有色金属学报, 2011, 21(6): 1220
[16] Wang Y H, Chen Y L, Zhu X, et al. Hot deformation behaviors and hot processing maps of 7175 aluminum alloy [J]. J. Plast. Eng., 2024, 31(1): 216
王永红, 陈彦龙, 朱 鑫 等. 7175铝合金热变形行为与热加工图 [J]. 塑性工程学报, 2024, 31(1): 216
[17] Sellars C M, Mctegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14(9): 1136
[18] Li A, Zhang Y, Chen K Y, et al. Hot deformation behavior and dynamic recrystallization of Sc modified ultrahigh-strength aluminum alloy at strain rate of 10-3 s-1 [J]. J. Mater. Eng., 2024, 52(8): 169
李 昂, 张 毅, 陈开媛 等. 含钪超高强铝合金在应变速率10-3 s-1下的热流变及动态再结晶行为 [J]. 材料工程, 2024, 52(8): 169
[19] Hu H, Zhao F, Zhang Z H, et al. Effect of microstructure difference between center and edge of 2014 aluminum alloy extruded bar on hot compression deformation and recrystallization microstructure [J]. Chin. J. Nonferrous Met., 2022, 32(3): 603
胡 昊, 赵 帆, 张志豪 等. 2014铝合金挤压棒心表组织差异对热变形和再结晶的影响 [J]. 中国有色金属学报, 2022, 32(3): 603
[20] Yang D, Chen W L, Wang S Y, et al. Dynamic recrystallization grain size evolution model of 7075 aluminum alloy during hot deformation [J]. Chin. J. Nonferrous Met., 2013, 23(10): 2747
杨 栋, 陈文琳, 王少阳 等. 7075铝合金热变形时动态再结晶晶粒度演化模型 [J]. 中国有色金属学报, 2013, 23(10): 2747
[21] Feng X M, Wang Y T, Huang Q G, et al. The dynamic recrystallization microstructure characteristics and the effects on static recrystallization and mechanical properties of Al-Mg-Si alloy [J]. Mater. Sci. Eng., 2024, 899A: 146454
[22] Li J C, Wu X D, Cao L F, et al. Hot deformation and dynamic recrystallization in Al-Mg-Si alloy [J]. Mater. Charact., 2021, 173: 110976
[23] Cheng Z N, Zhang C S, Chu G N, et al. Dynamic precipitation and recrystallization behavior during hot deformation of Al-Zn-Mg-Cu alloy: Experiment and modeling [J]. Int. J. Plast., 2024, 178: 103995
[1] YANG Jingqing, DONG Wenchao, LU Shanping. Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] ZHAN Jie, CHEN Xiaojiang, ZOU Zhili, SU Xingdong, XIE Shiyu, JIANG Liang, WANG Jinling, WANG Lielin. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] SHI Yuanji, CHENG Cheng, ZHANG Haitao, HU Daochun, CHEN Jingjing, LI Junwan. Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] WANG Mingyu, LI Shujun, HE Zhenghua, TANG Mingde, ZHANG Siqian, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] ZHANG Wei, ZHANG Bing, ZHOU Jun, LIU Yue, WANG Xufeng, YANG Feng, ZHANG Haiqin. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
No Suggested Reading articles found!