Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (4): 308-320    DOI: 10.11901/1005.3093.2023.288
ARTICLES Current Issue | Archive | Adv Search |
Critical Corrosion Factors for J55 Tubing Steel in a Simulated Annulus Environment of CO2 Injection Well
CUI Huaiyun1, LIU Zhiyong1,2(), LU Lin1,3()
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Key Laboratory of Safety Evaluation of Steel Pipes and Fittings for State Market Regulation, Shijiazhuang 050000, China
3.State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan 114000, China
Cite this article: 

CUI Huaiyun, LIU Zhiyong, LU Lin. Critical Corrosion Factors for J55 Tubing Steel in a Simulated Annulus Environment of CO2 Injection Well. Chinese Journal of Materials Research, 2024, 38(4): 308-320.

Download:  HTML  PDF(7742KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

CO2-enchanced oil recovery technology has been widely used to enhance the profitability of oil fields. The leakage of CO2 into the annulus environment results in the formation of strong corrosive annulus fluid there, which is ineluctable. Due to the fluctuations of annulus environmental parameters in the practice, therefore, to simulate the annulus environment in the laboratory may be very difficult. Based on the parameters of the real annulus environment, the impact of total pressure, partial pressure of CO2 (PCO2), pH value and temperature (T) etc., on the corrosion behavior of J55 steel are investigated by means of numerical simulation in terms of the parameters, electrochemical test and correlation analysis. Results shows that the PCO2 and T are the critical factors influencing corrosion behavior. The Spearman correlation coefficient (r) between PCO2 and charge transfer resistance (Rct) is -0.623, where the significant level is 0.013 (2-tailed), which means that the Rct is significantly correlated with the PCO2. The increasing PCO2 can decrease the pH value of the simulated annulus environment and accelerate the corrosion of J55 steel. The r between T and Rct is -0.692, where the significant level is 0.004 (2-tailed), which means that the Rct is significantly correlated with the T. The decreasing temperature can reduce the reaction activity of J55 steel, mitigate the corrosion and restrict the formation of FeCO3 scale. The initial pH of the simulated solution has a little promoting effect on the corrosion of J55 steel, which may be covered by the effect of T and PCO2.

Key words:  materials failure and protection      CO2 corrosion      electrochemical      J55 steel      annulus environment     
Received:  09 June 2023     
ZTFLH:  TG172  
Fund: Science and Technology Planning Project of State Administration for Market Regulatory(2021-MK020)
Corresponding Authors:  LIU Zhiyong, Tel: (010)62333931, E-mail: liuzhiyong7804@126.com;

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.288     OR     https://www.cjmr.org/EN/Y2024/V38/I4/308

CSiMnPSCrNiNbVFe
0.3950.2831.320.04190.02930.1060.04180.01580.0053Bal.
Table 1  Chemical composition of J55 steel (mass fraction, %)
Fig.1  Microstructure of J55 steel
CompositionValue
Sulfate / mg·L-13000~15000
NaHCO3 / mg·L-1150~1000
KCl / mg·L-112000~15000
NaCl / mg·L-112000~15000
Inhibitor / mg·L-150~200
PCO2 / MPa4.00
Table 2  Chemical composition of oilfield water
ParametersKH'* / 101 mol·L-1·MPa-1K1'* / mol·L-1K2* / mol·L-1Kw* /(mol·L-1)2ρw / g·cm-3
a12.0302-7.8294-15.707-4.0981.8105 × 10-3
a2-2.3508 × 10-28.2473 × 10-33.0972 × 10-2-3245.2138.08
a32.6144 × 10-5-1.0530 × 10-5-4.3124 × 10-52.2362 × 104-
a4-4.4527 × 10-43.8058 × 10-4-3.9840 × 107-
a5-0.47721.16613.957-
a6--0.118-0.3466-1262.3-
a7---8.5641 × 105-
Table 3  Modified calculation parameters for equilibrium constant[23]
Fig.2  Calculated results of pH value for the simulated annulus environment
Fig.3  pH value versus partial pressure of CO2 at 25oC
Fig.4  Schematic diagram of electrochemical specimens
Fig.5  Nyquist plots (a) and Bode plots (b) of J55 steel with different total pressure (PCO2= 4 MPa, pH = 4, T = 25oC)
Fig.6  Equivalent circuits for electrochemical impedance spectra with different temperature (a) 25~50oC, (b) 5~15oC
Ptotal / MPaRs / Ω·cm2Qdl × 10-4 / Ω-1·cm-2·s-nndlRct / Ω·cm2RL / Ω·cm2L / H∙cm-2Cf / F·cm-2Rpore / Ω·cm2
157.865.380.81475.18253.2155.82.29826.17
126.607.490.79670.08301.4189.42.0313.66
97.106.230.81256.67217.9112.31.34912.77
69.085.350.81959.40203.5118.32.70518.62
48.516.500.78467.92254.7110.11.9523.12
Table 4  Fitting results of electrochemical impedance spectra of J55 steel with different total pressure
Fig.7  Polarization curves (a) and fitting results (b) of J55 steel with different total pressure (PCO2= 4 MPa, pH = 4, T = 25oC)
Fig.8  Nyquist plots (a) and Bode plots (b) of J55 steel with different PCO2 (Ptotal = 9 MPa, pH = 4, T = 25oC)
PCO2 / MPaRs / Ω·cm2Qdl × 10-4-1·cm-2·s-nndlRct / Ω·cm2RL / Ω·cm2L / H·cm-2Cf / F·cm-2Rpore / Ω·cm2
47.106.230.81256.67217.9112.31.34912.77
38.365.120.82095.87314.42331.80112.23
27.805.120.817115.1449.2451.71.38610.84
17.8713.940.823197.8620.16401.28422.69
0.16.1632.840.847268.7933.213300.317525.57
Table 5  Fitting results of electrochemical impedance spectra of J55 steel with different PCO2
Fig.9  Polarization curves (a) and fitting results (b) of J55 steel with differentPCO2 (Ptotal = 9 MPa, pH = 4, T = 25oC)
Fig.10  Nyquist plots (a) and Bode plots (b) of J55 steel with different pH value (Ptotal = 9 MPa, PCO2 = 4 MPa, T = 25oC)
pHRs / Ω·cm2Qdl × 10-4 / Ω-1·cm-2·s-nndlRct / Ω·cm2RL / Ω·cm2L / H·cm2Cf / F·cm2Rpore / Ω·cm2
47.106.230.81256.67217.9112.31.34912.77
57.306.550.80462.82151032.3225.3
67.654.940.80781.52531643.0632
Table 6  The fitting results of electrochemical impedance spectra of J55 steel with different pH value
Fig.11  Polarization curves (a) and fitting results (b) of J55 steel with different pH value (Ptotal = 9 MPa, PCO2 = 4 MPa, T = 25oC)
Fig.12  Nyquist plots (a) and Bode plots (b) of J55 steel with different temperature (Ptotal = 9 MPa, PCO2= 4 MPa, pH= 4)
T / oCRs / Ω·cm2Qdl × 10-4 / Ω-1·cm-2·s-nndlRct / Ω·cm2RL / Ω·cm2L / H·cm2Cf / F·cm2Rpore / Ω·cm2
512.43.670.83242.810981952--
1513.224.970.813116.8562689--
257.106.230.81256.67217.9112.31.34912.77
407.2713.20.77226.8474.519.83.2992.43
505.6212.50.81318.353.712.73.117.64
Table 7  Fitting results of electrochemical impedance spectra of J55 steel with different temperature
Fig.13  Potentiodynamic polarization curves of J55 steel with different temperatures (a) and fitted results (b) (Ptotal = 9 MPa,PCO2 = 4 MPa, pH= 4)
NumberPtotal / MPaPCO2 / MPapHT / oCRct / Ω·cm2Icorr / μA·cm-2
PP19442556.67428.00
PP29342595.87201.00
PP392425115.1116.00
PP491425197.888.00
PP590.1425268.732.00
pH19442556.67428.00
pH29452562.8386.00
pH39462581.5312.00
T19445242.895.10
T294415116.8189.80
T39442556.67428.00
T49444026.841101.30
T59445018.31422.90
PT115442575.18236.21
PT212442570.08313.92
PT39442556.67428.00
PT46442559.40418.17
PT54442567.92395.23
Table 8  Original data for calculating correlation
Shapiro-Wilk
StatisticSig. (P value)
Ptotal / MPa0.7410.001
PCO2 / MPa0.5990.000
pH0.4210.000
T / oC0.7360.001
Rct / Ω·cm20.8370.011
Icorr / μA·cm-20.7420.001
Table 9  Normality test of data in Table 7
Fig.14  Frequency histogram of environmental parameters and corrosion kinetics parameters
PtotalPCO2pHTRctIcorr
Ptotalr1.0000.0000.0000.0000.147-0.211
P-1.0001.0001.0000.6020.451
PCO2r0.0001.0000.2320.000-0.623*0.692**
P1.000-0.4051.0000.0130.004
pHr0.0000.2321.0000.000-0.0780.085
P1.0000.405-1.0000.7810.765
Tr0.0000.0000.0001.000-0.692**0.633*
P1.0001.0001.000-0.0040.011
Rctr0.147-0.623*-0.078-0.692**1.000-0.986**
P0.6020.0130.7810.004-0.000
Icorrr-0.2110.692**0.0850.633*-0.986**1.000
P0.4510.0040.7650.0110.000-
Table 10  Results of Spearman correlation analysis
1 Banos A, Burrows R, Scott T B. A review of the mechanisms, reaction products and parameters affecting uranium corrosion in wa-ter [J]. Coord. Chem. Rev., 2021, 439: 213899
2 Huang B P. Study on CO2 immiscible flooding technology in low permeability reservoir of Daqing Oilfield [D]. Daqing: Northeast Petroleum University, 2017
黄宝萍. 大庆油田低渗透油藏CO2非混相驱油技术研究 [D]. 大庆: 东北石油大学, 2017
3 Hou B S. Corrosion and electrochemical behavior of N80 steel in high temperature and high pressure CO2/O2 environment [D]. Wuhan: Huazhong University of Science and Technology, 2017
侯保山. N80钢高温高压CO2/O2腐蚀及电化学行为研究 [D]. 武汉: 华中科技大学, 2017
4 Cui H Y, Mei P C, Liu Z Y, et al. Effect of CO2 partial pressure on the stress corrosion cracking behavior of N80 tubing steel in the annulus environment of CO2 injection well [J]. Chin. J. Eng., 2020, 42(9): 1182
崔怀云, 梅鹏程, 刘智勇 等. CO2分压对N80油管钢在CO2驱注井环空环境中应力腐蚀行为的影响 [J]. 工程科学学报, 2020, 42(9): 1182
5 Cui H Y, Mei P C, Lu L, et al. Effect of imidazoline corrosion inhibitor on stress corrosion behavior of N80 tubing steel in simulated annulus environment [J]. Saf. Health Environ., 2020, 20(11): 24
崔怀云, 梅鹏程, 卢 琳 等. 模拟环空环境下咪唑啉缓蚀剂对N80油管钢应力腐蚀行为的影响 [J]. 安全、健康和环境, 2020, 20(11): 24
6 Sun X G, Cui H Y, Li Z, et al. Effect of service environmental parameters on electrochemical corrosion behavior of L80 casing steel [J]. Materials, 2021, 14(19): 5575
7 Kahyarian A, Nesic S. On the mechanism of carbon dioxide corrosion of mild steel: Experimental investigation and mathematical modeling at elevated pressures and non-ideal solutions [J]. Corros. Sci., 2020, 173: 108719
8 Alsalem M M, Ryan M P, Campbell A N, et al. Modelling of CO2 corrosion and FeCO3 formation in NaCl solutions [J]. Chem. Eng. J., 2023, 451: 138966
9 Zhang G A, Liu D, Li Y Z, et al. Corrosion behaviour of N80 carbon steel in formation water under dynamic supercritical CO2 condition [J]. Corros. Sci., 2017, 120: 107
10 Zhang G A, Lu M X, Wu Y S. Morphology and microstructure of CO2 corrosion scales [J]. Chin. J. Mater. Res., 2005, 19(5): 537
张国安, 路民旭, 吴荫顺. CO2腐蚀产物膜的微观形貌和结构特征 [J]. 材料研究学报, 2005, 19(5): 537
11 Hua Y, Barker R, Neville A. Comparison of corrosion behaviour for X-65 carbon steel in supercritical CO2-saturated water and water-saturated/unsaturated supercritical CO2 [J]. J. Supercrit. Fluids, 2015, 97: 224
12 Xu L N, Xiao H, Shang W J, et al. Passivation of X65 (UNS K03014) carbon steel in NaHCO3 solution in a CO2 environment [J]. Corros. Sci., 2016, 109: 246
13 Jia Z J, Du C W, Liu Z Y, et al. Effect of pH on the corrosion and electrochemical behavior of 3Cr steel in CO2 saturated NaCl solution [J]. Chin. J. Mater. Res., 2011, 25(1): 39
贾志军, 杜翠薇, 刘智勇 等. 3Cr低合金钢在含饱和CO2的NaCl溶液中的腐蚀电化学行为 [J]. 材料研究学报, 2011, 25(1): 39
14 Li G, Wu W, Chai P L, et al. Influence of Cr and Ni elements on the electrochemical and early corrosion behavior of FeMnAlC low-density steel [J]. J. Mater. Res. Technol., 2023, 23: 5892
15 Nordsveen M, Nešić S, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 1: theory and verification [J]. Corrosion, 2003, 59(5): 443
16 Nešić S, Nordsveen M, Nyborg R, et al. A Mechanistic Model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 2: a numerical experiment [J]. Corrosion, 2003, 59(6): 489
17 Tan Z W, Yang L Y, Zhang D L, et al. Development mechanism of internal local corrosion of X80 pipeline steel [J]. J. Mater. Sci. Technol., 2020, 49: 186
doi: 10.1016/j.jmst.2019.10.023
18 Wei L, Pang X L, Liu C, et al. Formation mechanism and protective property of corrosion product scale on X70 steel under supercritical CO2 environment [J]. Corros. Sci., 2015, 100: 404
19 Choi Y S, Farelas F, Nešić S, et al. Corrosion behavior of deep water oil production tubing material under supercritical CO2 environment: part 1—effect of pressure and temperature [J]. Corrosion, 2014, 70(1): 38
20 Li C, Xiang Y, Wang R T, et al. Exploring the influence of flue gas impurities on the electrochemical corrosion mechanism of X80 steel in a supercritical CO2-saturated aqueous environment [J]. Corros. Sci., 2023, 211: 110899
21 Bacca K R G, Lopes N F, dos Santos Batista G, et al. Electrochemical, mechanical, and tribological properties of corrosion product scales formed on X65 steel under CO2 supercritical pressure environments [J]. Surf. Coat. Technol., 2022, 446: 128789
22 Sun C, Li J K, Shuang S, et al. Effect of defect on corrosion behavior of electroless Ni-P coating in CO2-saturated NaCl solution [J]. Corros. Sci., 2018, 134: 23
23 Oddo J E, Tomson M B. Simplified calculation of CaCO3 saturation at high temperatures and pressures in brine solutions [J]. J. Pet. Technol., 1982, 34(7): 1583
24 Adamczyk K, Prémont-Schwarz M, Pines D, et al. Real-time observation of carbonic acid formation in aqueous solution [J]. Science, 2009, 326(5960): 1690
doi: 10.1126/science.1180060 pmid: 19965381
25 Pitzer K S. Thermodynamics of electrolytes. I. Theoretical basis and general equations [J]. J. Phys. Chem., 1973, 77(2): 268
26 Pitzer K S, Mayorga G. Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent [J]. J. Phys. Chem., 1973, 77(19): 2300
27 Iversen G R, Gergen M, translated by Wu X Z, Cheng B, Liu L X, et al. Statistics [M]. Beijing: Higher Education Press, 2000: 257
Iversen G R, Gergen M著, 吴喜之, 程 博, 柳林旭等译.统计学 [M]. 北京: 高等教育出版社, 2000: 257
28 Almeida T D C, Bandeira M C E, Moreira R M, et al. New insights on the role of CO2 in the mechanism of carbon steel corrosion [J]. Corros. Sci., 2017, 120: 239
29 Keddam M, Mottos O R, Takenouti H. Reaction model for iron dissolution studied by electrode impedance: I. Experimental results and reaction model [J]. J. Electrochem. Soc., 1981, 128(2): 257
30 Barcia O E, Mattos O R. The role of chloride and sulphate anions in the iron dissolution mechanism studied by impedance measurements [J]. Electrochim. Acta, 1990, 35(6): 1003
31 Zhang G A, Zeng Y, Guo X P, et al. Electrochemical corrosion behavior of carbon steel under dynamic high pressure H2S/CO2 environment [J]. Corros. Sci., 2012, 65: 37
32 Sekine I, Sakaguchi K, Yuasa M. The determination of film resistance by means of the frequency at the maximum phase angle and the estimation of the degradation of the coating film [J]. Bull. Chem. Soc. Japan, 1990, 63(4): 1237
33 Zhang L. Thermodynamic models for accurate calculations of densities of brines and solubilities of gas mixtures in brines [D]. Xi'an: Northwest University, 2016
张 路. 混合气体—卤水体系的密度和气体溶解度计算模型 [D]. 西安: 西北大学, 2016
34 Liu R, Liu L, Wang F H. The role of hydrostatic pressure on the metal corrosion in simulated deep-sea environments—a review [J]. J. Mater. Sci. Technol., 2022, 112: 230
35 Yang Z X, Kan B, Li J X, et al. Hydrostatic pressure effects on corrosion behavior of X70 pipeline steel in a simulated deep-sea environment [J]. J. Electroanal. Chem., 2018, 822: 123
36 Zhang C, Zhang Z W, Liu L. Degradation in pitting resistance of 316L stainless steel under hydrostatic pressure [J]. Electrochim. Acta, 2016, 210: 401
[1] WU Houran, DUAN Tigang, MA Li, SHAO Gangqin, ZHANG Hengyu, ZHANG Haibing. Electrochemical Performance of Al-Zn-In-Mg-Ga-Mn Alloys as Anodes for Al-Air Batteries[J]. 材料研究学报, 2024, 38(4): 257-268.
[2] CHEN Zhenyong, WEI Xinxin, XU Yanting, ZHANG Bo, MA Xiuliang. Effect of Electrochemical Nitriding on the Surface Structure of Stainless Steel[J]. 材料研究学报, 2024, 38(3): 161-167.
[3] LI Feiyang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, TANG Yanbing. Passivation Behavior of Laser Selective Melted 316L Stainless Steel in Sulphuric Acid Containing Chloride Ion Solution[J]. 材料研究学报, 2024, 38(3): 221-231.
[4] XU Long, LI Jiwen, CUI Chuanyu, LU Qi, YANG Hao, ZHAO Congcong. Corrosion Behavior of Cold Sprayed Zn15Al Alloy Coating on Q235 Carbon Steel in NaCl Aqueous Solution[J]. 材料研究学报, 2024, 38(3): 208-220.
[5] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[7] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
[8] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[9] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[10] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[11] YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties[J]. 材料研究学报, 2022, 36(4): 314-320.
[12] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[13] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[14] WANG Gen, LI Xinmei, LU Caibin, WANG Songchen, CHAI Cheng. Preparation and Properties of CoCuFeNiTi High Entropy Alloy Coating[J]. 材料研究学报, 2021, 35(8): 561-571.
[15] TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. 材料研究学报, 2021, 35(7): 526-534.
No Suggested Reading articles found!