|
|
Effect of Electrochemical Nitriding on the Surface Structure of Stainless Steel |
CHEN Zhenyong1,2, WEI Xinxin3, XU Yanting1,2, ZHANG Bo3( ), MA Xiuliang3,4 |
1.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Shenyang 110016, China 3.Songshan Lake Materials Laboratory, Bay Area Center for Electron Microscopy, Dongguan 523830, China 4.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
Cite this article:
CHEN Zhenyong, WEI Xinxin, XU Yanting, ZHANG Bo, MA Xiuliang. Effect of Electrochemical Nitriding on the Surface Structure of Stainless Steel. Chinese Journal of Materials Research, 2024, 38(3): 161-167.
|
Abstract Nitrogen is well known as a beneficial alloying element which entitles stainless steels an enhanced corrosion resistance against chloride attack. The introduction of N into the surface of stainless steel can be achieved by electrochemical nitriding. The role that Nitrogen plays in pitting resistance has long been discussed focusing on the distribution and incorporation form of N as well as the modification to the local corrosive circumstance induced by the N-participated electrode reactions. For electrochemical nitriding, stainless steel surface, as the place on which involved electrode reactions occur, is expected to undergo structural evolution. This, to some extent, would influence the corrosion property of nitrided stainless steel. Detecting the structural evolution occurring in the electrochemical nitriding is of great significance for deciphering the involved electrode reactions and thus optimizing the nitriding parameters. In this work, using atomic force microscopy as well as transmission electron microscopy, we have clarified the concomitant localized reductive dissolution of passive film, anodic dissolution of metal matrix at micro-anodic sites, as well as re-deposition of the dissolved metal cations, which roughens the surface by forming the undulations at surface with undulation amplitude in the range of a few tens of nanometers. Element mapping analysis by Super EDS technique reveals that the re-deposited product is mainly comprised of iron oxide, which indicates iron is dissolved and the resultant iron cations occurs re-deposition.
|
Received: 24 March 2023
|
|
Fund: National Natural Science Foundation of China(51971228);National Natural Science Foundation of China(51771212) |
Corresponding Authors:
ZHANG Bo, Tel:13624078267, E-mail: bozhang@sslab.org.cn
|
1 |
Ozdemir A C, Buluş K, Zor K. Medium- to long-term nickel price forecasting using LSTM and GRU networks [J]. Resour. Policy, 2022, 78: 102906
doi: 10.1016/j.resourpol.2022.102906
|
2 |
Rashev T V, Eliseev A V, Zhekova L T, et al. High-nitrogen steel [J]. Steel Transl., 2019, 49(7): 433
doi: 10.3103/S0967091219070106
|
3 |
Simmons J W. Overview: high-nitrogen alloying of stainless ste-els [J]. Mater. Sci. Eng., 1996, 207A(2) : 159
|
4 |
Norström L Å. The influence of nitrogen and grain size on yield strength in type AISI 316L austenitic stainless steel [J]. Metal Sci., 1977, 11(6): 208
doi: 10.1179/msc.1977.11.6.208
|
5 |
Mori G, Bauernfeind D. Pitting and crevice corrosion of superaustenitic stainless steels [J]. Mater. Corros., 2004, 55(3): 164
|
6 |
Bandy R, Rooyen D V. Properties of nitrogen-containing stainless alloy designed for high resistance to pitting [J]. Corrosion, 1985, 41(4): 228
doi: 10.5006/1.3581995
|
7 |
Osozawa K, Okato N. Passivity and its breakdown on iron and iron-base alloys [R]. Houston, USA: National Association of Corrosion Engineers, 1976: 135
|
8 |
Baba H, Kodama T, Katada Y. Role of nitrogen on the corrosion behavior of austenitic stainless steels [J]. Corros. Sci., 2002, 44(10): 2393
doi: 10.1016/S0010-938X(02)00040-9
|
9 |
Ives M B, Lu Y C, Luo J L. Cathodic reactions involved in metallic corrosion in chlorinated saline environments [J]. Corros. Sci., 1991, 32(1): 91
doi: 10.1016/0010-938X(91)90065-W
|
10 |
Lu Y C, Bandy R, Clayton C R, et al. Surface enrichment of nitrogen during passivation of a highly resistant stainless steel [J]. J. Electrochem. Soc., 1983, 130(8): 1774
doi: 10.1149/1.2120091
|
11 |
Lu Y C, Ives M B, Clayton C R. Synergism of alloying elements and pitting corrosion resistance of stainless steels [J]. Corros. Sci., 1993, 35(1-4): 89
doi: 10.1016/0010-938X(93)90137-6
|
12 |
Sadough Vanini A, Audouard J P, Marcus P. The role of nitrogen in the passivity of austenitic stainless steels [J]. Corros. Sci., 1994, 36(11): 1825
doi: 10.1016/0010-938X(94)90021-3
|
13 |
Mani S P, Anandan C, Rajendran N. Formation of a protective nitride layer by electrochemical nitridation on 316L SS bipolar plates for a proton exchange membrane fuel cell (PEMFC) [J]. RSC Adv., 2015, 5(79): 64466
doi: 10.1039/C5RA05412E
|
14 |
Wang H L, Teeter G, Turner J A. Modifying a stainless steel via electrochemical nitridation [J]. J. Mater. Chem., 2011, 21(7): 2064
doi: 10.1039/c0jm03585h
|
15 |
Liu B, Zhao H Y, Li F, et al. Characterization and corrosion behavior of high-nitrogen HP-13Cr stainless steel in CO2 and H2S environment [J]. Int. J. Electrochem. Sci., 2021, 16: 150915
doi: 10.20964/2021.01.62
|
16 |
Truman J E, Coleman M J, Pirt K R. Note on the influence of nitrogen content on the resistance to pitting corrosion of stainless steels [J]. Br. Corros. J., 1977, 12(4): 236
doi: 10.1179/000705977798318973
|
17 |
Olsson C O A. The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless steel 2205 studied by AES and XPS [J]. Corros. Sci., 1995, 37(3): 467
doi: 10.1016/0010-938X(94)00148-Y
|
18 |
Park W I, Jung S M, Sasaki Y. Fabrication of ultra high nitrogen austenitic stainless steel by NH3 solution nitriding [J]. ISIJ Int., 2010, 50(11): 1546
doi: 10.2355/isijinternational.50.1546
|
19 |
Sah J, Joseph A, Jhala G, et al. On the effects of H2 and Ar on dual layer formed by plasma nitrocarburizing on austenitic stainless steels [J]. J. Mater. Eng. Perform., 2022, 31(4): 2664
doi: 10.1007/s11665-021-06380-1
|
20 |
Naeem M, Awan S, Shafiq M, et al. Wear and corrosion studies of duplex surface-treated AISI-304 steel by a combination of cathodic cage plasma nitriding and PVD-TiN coating [J]. Ceram. Int., 2022, 48(15): 21473
doi: 10.1016/j.ceramint.2022.04.115
|
21 |
Wang H L, Teeter G, Turner J A. Plasma nitrided type 349 stainless steel for polymer electrolyte membrane fuel cell bipolar plate-part I: nitrided in nitrogen plasma [J]. J. Fuel Cell Sci. Technol., 2010, 7(2): 021018
|
22 |
Li C X. Active screen plasma nitriding-an overview [J]. Surf. Eng., 2010, 26(1-2): 135
doi: 10.1179/174329409X439032
|
23 |
Zhang Z L, Bell T. Structure and corrosion resistance of plasma nitrided stainless steel [J]. Surf. Eng., 1985, 1(2): 131
doi: 10.1179/sur.1985.1.2.131
|
24 |
Willenbruch R D, Clayton C R, Oversluizen M, et al. An XPS and electrochemical study of the influence of molybdenum and nitrogen on the passivity of austenitic stainless steel [J]. Corros. Sci., 1990, 31: 179
doi: 10.1016/0010-938X(90)90106-F
|
25 |
Wang H L, Turner J A. Electrochemical nitridation of a stainless steel for PEMFC bipolar plates [J]. Int. J. Hydrogen Energy, 2011, 36(20): 13008
doi: 10.1016/j.ijhydene.2011.07.045
|
26 |
Tandon V, Patil A P. On the influence of cold working and electrochemical nitridation on the corrosion behaviour of 316L austenitic stainless steel in acidic environment [J]. Surf. Eng. Appl. Electrochem., 2020, 56(1): 63
doi: 10.3103/S1068375520010147
|
27 |
Lv J L, Jin H J, Liang T X. The effect of electrochemical nitridation on the corrosion resistance of the passive films formed on the 2205 duplex stainless steel [J]. Mater. Lett., 2019, 256: 126640
doi: 10.1016/j.matlet.2019.126640
|
28 |
Pugal Mani S, Rajendran N. Corrosion and interfacial contact resistance behavior of electrochemically nitrided 316L SS bipolar plates for proton exchange membrane fuel cells [J]. Energy, 2017, 133: 1050
doi: 10.1016/j.energy.2017.05.086
|
29 |
Lv J L, Liang T X, Luo H Y. Effect of grain refinement and electrochemical nitridation on corrosion resistance of the 316L stainless steel for bipolar plates in PEMFCs environment [J]. J. Power Sources, 2015, 293: 692
doi: 10.1016/j.jpowsour.2015.06.006
|
30 |
Wang H, Turner J A. Modifying a stainless steel for PEMFC bipolar plates via electrochemical nitridation [J]. Fuel Cells, 2013, 13(5): 917
doi: 10.1002/fuce.v13.5
|
31 |
Nam N D, Jo D S, Kim J G, et al. Corrosion protection of CrN/TiN multi-coating for bipolar plate of polymer electrolyte membrane fuel cell [J]. Thin Solid Films, 2011, 519(20): 6787
doi: 10.1016/j.tsf.2011.01.207
|
32 |
Bottoli F, Jellesen M S, Christiansen T L, et al. High temperature solution-nitriding and low-temperature nitriding of AISI 316: effect on pitting potential and crevice corrosion performance [J]. Appl. Surf. Sci., 2018, 431: 24
doi: 10.1016/j.apsusc.2017.06.094
|
33 |
Ahila S, Reynders B, Grabke H J. The evaluation of the repassivation tendency of Cr-Mn and Cr-Ni steels using scratch technique [J]. Corros. Sci., 1996, 38(11): 1991
doi: 10.1016/S0010-938X(96)00092-3
|
34 |
Srinivasan A, Reynders B, Grabke H J. Localised corrosion behaviour of high and low nitrogen Cr-Mn steels [J]. Steel Res., 1995, 66(10): 439
doi: 10.1002/srin.1995.66.issue-10
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|