Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (4): 241-247    DOI: 10.11901/1005.3093.2023.255
ARTICLES Current Issue | Archive | Adv Search |
Effect of Annealing Temperature on Microstructure and Properties of a High-entropy Alloy Fe35Ni30Cr20Al10Nb5
LI Yunfei1,2,3, WANG Jinhe1,3, ZHANG Long1,3, LI Zhengkun1, FU Huameng1,3(), ZHU Zhengwang1,3, LI Hong1, WANG Aimin1,3, ZHANG Haifeng1,3
1.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

LI Yunfei, WANG Jinhe, ZHANG Long, LI Zhengkun, FU Huameng, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng. Effect of Annealing Temperature on Microstructure and Properties of a High-entropy Alloy Fe35Ni30Cr20Al10Nb5. Chinese Journal of Materials Research, 2024, 38(4): 241-247.

Download:  HTML  PDF(14630KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of annealing-temperature on the microstructure and properties of the low-melting point high-entropy alloy Fe35Ni30Cr20Al10Nb5 (molar ratio) were systematically investigated. The results show that with the increasing annealing-temperature, the volume fraction of Fe-Cr-rich fcc phase gradually decreases, while the volume fraction of Laves phase and B2-NiAl phase gradually increases for the as-cast alloy. The quasi-static compression test results show that the as-cast alloy has good compressive plastic deformation ability, and the yield strength of the alloy increases and then decreases as the annealing-temperature increases. The decrease in compression yield strength with the rising annealing-temperature is mainly attributed to the decomposition of the fcc phase at higher temperatures. The electrochemical test results show that the corrosion resistance of the alloy increases monotonically with the annealing-temperature, and the free-corrosion potential of the alloy annealed at 900oC is -72.02 mV.

Key words:  metallic materials      high entropy alloy      annealing treatment      mechanical properties      corrosion resistance     
Received:  08 May 2023     
ZTFLH:  TG13  
Fund: National Key Research and Development Program of China(2021YFA0716303);LingChuang Research Project of China National Nuclear Corporation;Chinese Science Academy 0 to 1 Project
Corresponding Authors:  FU Huameng, Tel: 13654219196, E-mail: hmfu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.255     OR     https://www.cjmr.org/EN/Y2024/V38/I4/241

Fig.1  XRD spectra of Fe35Ni30Cr20Al10Nb5 high-entropy alloy in different states
Fig.2  Microstructure of Fe35Ni30Cr20Al10Nb5 high-entropy alloy in different states (a) as-cast, (b) 700oC, (c) 800oC, (d) 900oC
Fig.3  EDS surface distribution of Fe35Ni30Cr20Al10Nb5 high entropy alloy in different states (a) as-cast, (b) 700oC, (c) 800oC, (d) 900oC
AlloysChemical composition / %, atomic fraction
FeNiCrAlNb
As-cast34.4339.2220.5010.974.89
700oC34.8729.3520.6610.344.78
800oC34.3529.1120.3911.085.08
900oC35.2928.9820.6210.744.37
Table 1  EDS results for different states of Fe35Ni30Cr20Al10-Nb5 high entropy alloy
Fig.4  Quasi-static compression properties of Fe35Ni30-Cr20Al10Nb5 high-entropy alloy under different states
Fig.5  Dynamic potential polarization curves of Fe35Ni30Cr20Al10Nb5 high-entropy alloy under different states
Temperature / oCEcorr vs. SCE / mVIcorr/ μA·cm-2
As-cast-184.104.86 × 10-2
700-191.102.55 × 10-1
800-80.672.06 × 10-1
900-72.027.40 × 10-2
Table 2  Corrosion parameters of Fe35Ni30Cr20Al10Nb5 high entropy alloy in 3.5%NaCl (mass fraction) solution in different states
ElementFeNiCrAlNb
Fe (0.127 nm)--2-1-11-16
Ni (0.125 nm)-2--7-22-30
Cr (0.127 nm)-1-7--10-7
Al (0.143 nm)-11-22-10--18
Nb (0.146 nm)-16-30-7-18-
Table 3  Mixed enthalpies (ΔHmix) of Fe, Ni, Cr, Al, Nb binary alloys[19] (kJ·mol-1)
Fig.6  Quasi-static compression fracture morphology of Fe35Ni30Cr20Al10Nb5 high-entropy alloy in different states (a) as-cast, (b) 700oC, (c) 800oC, (d) 900oC
Fig.7  Electrochemical corrosion morphology of Fe35Ni30Cr20Al10Nb5 high-entropy alloy in different states: (a) as-cast, (b) 700oC, (c) 800oC, (d) 900oC
1 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
2 Ye J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
3 Cao L G, Zhu L, Zhang L L, et al. Microstructure evolution and mechanical properties of rapid solidified AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Chin. J. Mater. Res., 2019, 33(9): 650
曹雷刚, 朱 琳, 张磊磊 等. 快速凝固AlCoCrFeNi2.1共晶高熵合金的微观组织演变和力学性能 [J]. 材料研究学报, 2019, 33(9): 650
doi: 10.11901/1005.3093.2019.069
4 Zhao R F, Ren B, Zhang G P, et al. Effect of Co content on the phase transition and magnetic properties of Co x CrCuFeMnNi high-entropy alloy powders [J]. J. Magn. Magn. Mater., 2018, 468: 14
5 Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCr-FeMnNi high-entropy alloy after severe plastic deformation [J] Acta Mater., 2015, 96: 258
6 Ji Y, Zhang L, Lu X, et al. Microstructural optimization of Fe x CrNiAl0.5Ti0.5 high entropy alloys toward high ductility [J]. Appl. Phys. Lett., 2021, 119: 141903
7 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
8 Hamdy A S, El-Shenawy E, El-Bitar T. The corrosion behavior of niobium bearing cold deformed austenitic stainless steels in 3.5% NaCl solution [J]. Mater. Lett., 2007, 61: 2827
9 Wang H, Liu P, Chen X H, et al. Mechanical properties and corrosion resistance characterization of a novel Co36Fe36Cr18Ni10 high-entropy alloy for bioimplants compared to 316L alloy [J]. J. Alloys Compd., 2022, 906: 163947
10 Gao X Z, Lu Y P, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta Mater., 2017, 141: 59
11 Shi H, Fetzer R, Jianu A, et al. Influence of alloying elements (Cu, Ti, Nb) on the microstructure and corrosion behaviour of AlCrFeNi-based high entropy alloys exposed to oxygen-containing molten Pb [J]. Corros. Sci., 2021, 190: 109659
12 Brady M P, Magee J, Yamamoto Y, et al. Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance [J]. Mater. Sci. Eng., 2014, 590A: 101
13 Luo R, Chen L L, Zhang Y X, et al. Characteristic and mechanism of dynamic recrystallization in a newly developed Fe-Cr-Ni-Al-Nb superalloy during hot deformation [J]. J. Alloys Compd., 2021, 865: 158601
14 Chen Y Y, Duval T, Hung U D, et al. Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel [J]. Corros. Sci., 2005, 47(9): 2257
15 Chen Y Y, Hong U T, Shih H C, et al. Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel [J]. Corros. Sci., 2005, 47(11): 2679
16 Wang W R, Wang W L, Wang S C, et al. Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44
17 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10(6): 534
18 Wen C, Mo W W, Tian Y W, et al. Research progress on solid solution strengthening of high entropy alloys [J]. Mater. Rep., 2021, 35: 17081
文 成, 莫湾湾, 田玉琬 等. 高熵合金固溶强化问题的研究进展 [J]. 材料导报, 2021, 35: 17081
19 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46(12): 2817
20 Jiang B B, Yu Y, Cui J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance [J]. Science, 2021, 371(6531): 830
doi: 10.1126/science.abe1292 pmid: 33602853
[1] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[2] WANG Zhongnan, GUO Hui, MU Yueshan. Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification[J]. 材料研究学报, 2024, 38(4): 269-278.
[3] WANG Yuzhao, JIANG Zhonghua, JIA Chunni, ZHANG Yutuo, WANG Pei. Microstructure and Mechanical Properties of an Austempered Nanostructured Bainitic Steel[J]. 材料研究学报, 2024, 38(4): 279-287.
[4] TIAN Songwen, LIU Lirong, TIAN Sugui. Creep Behavior and Mechanism of a Re/Ru-containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2024, 38(4): 248-256.
[5] WU Houran, DUAN Tigang, MA Li, SHAO Gangqin, ZHANG Hengyu, ZHANG Haibing. Electrochemical Performance of Al-Zn-In-Mg-Ga-Mn Alloys as Anodes for Al-Air Batteries[J]. 材料研究学报, 2024, 38(4): 257-268.
[6] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[7] QI Kaili, HU Dejiang, GAO Chong, LIU Feng, PANG Jianchao, SHAO Chenwei, YANG Mengqi, LI Shouxin, ZHANG Zhefeng. Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures[J]. 材料研究学报, 2024, 38(3): 197-207.
[8] YAN Junzhu, GAO Ming, YU Xiaoming, TAN Lili. Effect of Ca and Ag Content on Microstructure and Properties of Biodegradable Alloy Zn-Li-Ca-Ag[J]. 材料研究学报, 2024, 38(3): 177-186.
[9] LIU Chenye, LUO Tianjiao, LI Yingju, FENG Xiaohui, HUANG Qiuyan, ZHENG Ce, ZHU Cheng, YANG Yuansheng. Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus[J]. 材料研究学报, 2024, 38(3): 187-196.
[10] YIN Yanchao, LV Yifan, LIU Qianli, XU Yali, JIANG Peng, YU Wei. Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature[J]. 材料研究学报, 2024, 38(3): 232-240.
[11] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[12] ZHENG Mingrui, LI Yawei, LIU Jing, WANG Li, ZHENG Wei, DONG Jiasheng, ZHANG Jian, LOU Langhong. Effect of Notch Orientation and Temperature on Thermal Fatigue Behavior of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2024, 38(2): 111-120.
[13] HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel[J]. 材料研究学报, 2024, 38(2): 121-129.
[14] ZENG Daoping, AN Tongbang, ZHENG Shaoxian, DAI Haiyang, CAO Zhilong, MA Chengyong. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel[J]. 材料研究学报, 2024, 38(2): 151-160.
[15] LIU Zhenhuan, LI Yonghan, LIU Yang, WANG Pei, LI Dianzhong. Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process[J]. 材料研究学报, 2024, 38(2): 130-140.
No Suggested Reading articles found!