Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (1): 33-42    DOI: 10.11901/1005.3093.2022.653
ARTICLES Current Issue | Archive | Adv Search |
Performance of Interlayer Toughened Carbon Fiber/Epoxy Composites of Polyethersulfone Porous Fiber Veil
LI Zhaoyang1,2, XUE Yi1,2, YANG Zehao1,2, ZHAO Qingzhi1,2, PENG Yanshuang1,2, LIU Yong1,2, YANG Jianping1, ZHANG Hui1,2()
1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, School of Materials Science and Engineering, Donghua University, Shanghai 201620, China
2 Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
Cite this article: 

LI Zhaoyang, XUE Yi, YANG Zehao, ZHAO Qingzhi, PENG Yanshuang, LIU Yong, YANG Jianping, ZHANG Hui. Performance of Interlayer Toughened Carbon Fiber/Epoxy Composites of Polyethersulfone Porous Fiber Veil. Chinese Journal of Materials Research, 2024, 38(1): 33-42.

Download:  HTML  PDF(19695KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to improve the interlaminar toughness of carbon fiber/epoxy (CF/EP) composites, polyethersulfone (PES) porous fibers were prepared by wet spinning, and four PES porous fiber veils (PESV) with different areal densities were prepared by wet-laid method, which were subsequently used for interlaminar toughening of CF/EP composites by vacuum-assisted resin infusion molding (VARI). The dissolution behavior of PES porous fibers in epoxy resin, the mode I (GIC) and mode II (GIIC) interlaminar fracture toughness, the interlaminar shear strength and flexural properties of the composites were systematically examined, and the interlaminar fracture microscopic morphology of the composites was also characterized. The results showed that the PES porous fibers were completely dissolved in the epoxy resin at the curing temperature of 180oC; The GIC and GIIC of CF/EP composites were best at the areal density of 31.6 g/m2, which increased by 54.4% and 62.2%, respectively, which may be ascribed to that the phase separation of PES porous fibers dissolved in epoxy resin resulted in a two-phase PES/epoxy structure, thereby, improved the interlayer toughness; The interlaminar shear strength, flexural strength and flexural modulus of CF/EP composites also increased by 2.9%, 4.0% and 7.7%, respectively, for the areal density of 21.9 g/m2.

Key words:  composite      carbon fiber      interlaminar toughen      polyethersulfone      fiber veil     
Received:  09 December 2022     
ZTFLH:  TB332  
Fund: Shanghai Commission of Science and Technology "Science and Technology Innovation Action Plan"(20511107300);National Key Research and Development Program of China(2022YFB3709202)
Corresponding Authors:  ZHANG Hui, Tel: 13681792738, E-mail: zhanghui@dhu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.653     OR     https://www.cjmr.org/EN/Y2024/V38/I1/33

Fig.1  PES porous fiber photos and microscopic SEM images (a) PES fiber photos, (b, c) surface microscopic morphologies and (d) cross-sectional microscopic morphology
Fig.2  Photos of PESV morphologies with different areal densities (a) 14.2 g/m2, (b) 21.9 g/m2, (c) 31.6 g/m2 and (d) 40.0 g/m2
Fig.3  Morphology of PES fibers in epoxy resin at different temperatures (a~c) isothermal infusion process, (d~f) heating process from 100oC to 180oC and (g~i) isothermal curing process
Fig.4  Test results of mode I interlaminar fracture toughness of PESV interlaminar toughened CF/EP composites with different areal densities (a) GIC and (b) R-curve
Fig.5  SEM images of GIC fracture surfaces of PESV interlayer toughened CF/EP composite with different areal densities (a) Ref., (b) PESV @ 14.2, (c) PESV @ 21.9, (d) PESV @ 31.6 and (e) PESV @ 40.0
Fig.6  SEM images of GIC fracture surfaces of PESV interlayer toughened CF/EP composite etched with NMP (a) Ref., (b) PESV @ 14.2, (c) PESV @ 21.9, (d) PESV @ 31.6 and (e) PESV @ 40.0
Fig.7  Mode II interlaminar fracture toughness of PESV interlaminar toughened CF/EP composites with different areal densities
Fig.8  SEM images of mode II fracture surfaces of PESV interlayer toughened CF/EP composite with different areal densities (a) Ref., (b) PESV @ 14.2, (c) PESV @ 21.9, (d) PESV @ 31.6 and (e) PESV @ 40.0
Fig.9  Interlaminar shear strength values of PESV interlaminar toughened CF/EP composites with different areal densities
Fig.10  Flexural properties of PESV interlayer toughened CF/EP composites with different areal densities
Fig.11  Schematic diagram of the toughening mechanism of PESV interlayer toughened CF/EP composites with different surface densities (a, b) PESV @ 14.2, (b) PESV @ 21.9, (c) PESV @ 31.6 and (d) PESV @ 40.0
1 Jiang S C, Bao J W, Zhang L W, et al. Research progress of liquid molding resin matrix composites and its technology [J]. Aeronaut. Manuf. Technol., 2021, 64(5): 70
蒋诗才, 包建文, 张连旺 等.液体成型树脂基复合材料及其工艺研究进展 [J]. 航空制造技术, 2021, 64(5): 70
2 Li P X, Chen P, Su J Z, et al. The recent development of advanced liquid composite molding technique and its application in aviation [J]. Fiber Reinf. Plast/Compos., 2016, (8): 99
李培旭, 陈 萍, 苏佳智 等.复合材料先进液体成型技术的航空应用与最新发展 [J]. 玻璃钢/复合材料, 2016, (8): 99
3 Jayan J S, Saritha A, Joseph K.Innovative materials of this era for toughening the epoxy matrix: a review [J]. Polym. Compos., 2018, 39(S4): E1959
4 Kolednik O, Kasberger R, Sistaninia M, et al. Development of damage-tolerant and fracture-resistant materials by utilizing the material inhomogeneity effect [J]. J. Appl. Mech., 2019, 86(11): 111004
doi: 10.1115/1.4043829
5 Yi X S, Xu Y H, Cheng Q F, et al. Development of studies on polymer matrix aircraft composite materials highly toughened [J]. Sci. Technol. Rev., 2008, 26(6): 84
益小苏, 许亚洪, 程群峰 等.航空树脂基复合材料的高韧性化研究进展 [J]. 科技导报, 2008, 26(6): 84
6 Lu K Y, Zhang Y Y, Yang X P, et al. Research development of interlaminar reinforcing and toughening technique of carbon fiber composites [J]. Aeronaut. Manuf. Technol., 2020, 63(18): 14
卢康逸, 张月义, 杨小平 等.碳纤维复合材料层间增强增韧技术研究进展 [J]. 航空制造技术, 2020, 63(18): 14
7 Zhao Z H, Sun J S, Guo Y, et al. Improving interlaminar toughness of carbon fiber/phthalonitrile composite via polyimide [J]. Acta Mater. Compos. Sin., 2021, 38(3): 732
赵泽华, 孙劲松, 郭 颖 等.聚酰亚胺颗粒层间增韧碳纤维/邻苯二甲腈树脂复合材料 [J]. 复合材料学报, 2021, 38(3): 732
8 Yi X S, Xu Y H, Cheng Q F, et al. Interlaminar toughness and characteristic morphology of laminated graphite composites interlaminar-toughened [J]. Chin. J. Mater. Res., 2008, 22(4): 337
益小苏, 许亚洪, 程群峰 等.层间韧化的碳纤维复合材料层压板的力学性能 [J]. 材料研究学报, 2008, 22(4): 337
9 İnal O, Akbolat M Ç, Soutis C, et al. Toughening mechanisms in cost-effective carbon-epoxy laminates with thermoplastic veils: mode-I and in-situ SEM fracture characterisation [J]. Int. J. Lightweight Mater. Manuf., 2021, 4(1): 50
10 Quan D, Bologna F, Scarselli G, et al. Mode-II fracture behaviour of aerospace-grade carbon fibre/epoxy composites interleaved with thermoplastic veils [J]. Compos. Sci. Technol., 2020, 191: 108065
doi: 10.1016/j.compscitech.2020.108065
11 Quan D, Bologna F, Scarselli G, et al. Interlaminar fracture toughness of aerospace-grade carbon fibre reinforced plastics interleaved with thermoplastic veils [J]. Composites, 2020, 128A: 105642
12 Wong D W Y, Zhang H, Bilotti E, et al. Interlaminar toughening of woven fabric carbon/epoxy composite laminates using hybrid aramid/phenoxy interleaves [J]. Composites, 2017, 101A: 151
13 Wang W T, Yu H N, Potter K, et al. Effect of the characteristics of nylon microparticles on Mode-I interlaminar fracture toughness of carbon-fibre/epoxy composites [J]. Composites, 2020, 138A: 106073
14 Huang Y, Liu W S, Jiang Q R, et al. Interlaminar fracture toughness of carbon-fiber-reinforced epoxy composites toughened by poly(phenylene oxide) particles [J]. ACS Appl. Polym. Mater., 2020, 2(8): 3114
doi: 10.1021/acsapm.0c00285
15 Cheng C, Zhang C Y, Zhou J L, et al. Improving the interlaminar toughness of the carbon fiber/epoxy composites via interleaved with polyethersulfone porous films [J]. Compos. Sci. Technol., 2019, 183: 107827
doi: 10.1016/j.compscitech.2019.107827
16 Yao J W, Liu M Y, Niu Y F. Mechanical properties of PEK-C interlayer toughened carbon fiber/epoxy composites [J]. Acta Mater. Compos. Sin., 2019, 36(5): 1083
姚佳伟, 刘梦瑶, 牛一凡.PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能 [J]. 复合材料学报, 2019, 36(5): 1083
17 Kang S F, Li J, Qu L, et al. Preparation and mechanical properties of taekifying-toughening carbon fiber composites by copolyester non-woven veils [J]. Compos. Sci. Eng., 2020, (4): 53
康少付, 李 进, 瞿 立 等.共聚酯无纺布定型-增韧碳纤维复合材料的制备及力学性能 [J]. 复合材料科学与工程, 2020, (4): 53
18 Cheng C, Chen Z G, Huang Z, et al. Simultaneously improving mode I and mode II fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned PES fiber webs [J]. Composites, 2020, 129A: 105696
19 Beylergil B, Tanoğlu M, Aktaş E.Effect of polyamide-6,6 (PA 66) nonwoven veils on the mechanical performance of carbon fiber/epoxy composites [J]. Compos. Struct., 2018, 194: 21
doi: 10.1016/j.compstruct.2018.03.097
20 Hansen C M.The three dimensional solubility parameter-key to paint component affinities: I. Solvents, plasticizers, polymers, and resins [J]. J. Paint. Technol., 1967, 39(505): 104
21 Hansen C M.The three dimensional solubility parameter-key to paint component affinities: solvents, plasticizers, polymers, and resins. II. Dyes, emulsifiers, mutual solubility and compatibility, and pigments. III. Independent cal-culation of the parameter components [J]. J. Paint. Technol., 1967, 39(505): 505
22 Hansen C M. Hansen Solubility Parameters: A User's Handbook [M]. Boca Raton: CRC Press, 2007
23 Kılıçoğlu M, Bat E, Gündüz G, et al. Fibers of thermoplastic polymer blends activate multiple interlayer toughening mechanisms [J]. Composites, 2022, 158A: 106982
24 He Y X, Li Q, Kuila T, et al. Micro-crack behavior of carbon fiber reinforced thermoplastic modified epoxy composites for cryogenic applications [J]. Composites, 2013, 44B(1) : 533
25 Wong D W Y, Lin L, McGrail P T, et al. Improved fracture toughness of carbon fibre/epoxy composite laminates using dissolvable thermoplastic fibres [J]. Composites, 2010, 41A(6) : 759
26 Yao J W, Zhang T, Niu Y F.Effect of curing time on phase morphology and fracture toughness of PEK-C film interleaved carbon fibre/epoxy composite laminates [J]. Compos. Struct., 2020, 248: 112550
doi: 10.1016/j.compstruct.2020.112550
27 Quan D, Wang G L, Zhao G Q, et al. On the interlayer toughening of carbon fibre/epoxy composites using surface-activated ultra-thin PEEK films [J]. Compos. Struct., 2023, 303: 116309
doi: 10.1016/j.compstruct.2022.116309
28 Zhang D J, Bao J W, Zhong X Y, et al. Preparation and properties of carbon fiber reinforced epoxy resin Composites interlaminate-toughened by polyethersulfone ultrafine-fiber non-woven fabric [J]. Acta Mater. Compos. Sin., 2022, 39(8): 3767
张代军, 包建文, 钟翔屿 等.聚醚砜超细纤维无纺布层间增韧碳纤维/环氧树脂复合材料制备与表征 [J]. 复合材料学报, 2022, 39(8): 3767
29 Zhou J L, Zhang C Y, Cheng C, et al. Synergetic improvement of interlaminar fracture toughness in carbon fiber/epoxy composites interleaved with PES/PEK-C hybrid nanofiber veils [J]. Adv. Fiber Mater., 2022, 4(5): 1081
doi: 10.1007/s42765-022-00160-9
30 Sun Z Y, Xu L, Chen Z G, et al. Enhancing the mechanical and thermal properties of epoxy resin via blending with thermoplastic polysulfone [J]. Polymers, 2019, 11(3): 461
doi: 10.3390/polym11030461
31 Jiang M Q, Liu Y, Cheng C, et al. Enhanced mechanical and thermal properties of monocomponent high performance epoxy resin by blending with hydroxyl terminated polyethersulfone [J]. Polym. Test., 2018, 69: 302
doi: 10.1016/j.polymertesting.2018.05.039
[1] MA Yuan, WANG Han, NI Zhongqiang, ZHANG Jiangang, ZHANG Ruonan, SUN Xinyang, LI Chusen, LIU Chang, ZENG You. Synergistic Effect of Carbon Nanotubes with Zinc Oxide Nanowires for Enhanced Electromagnetic Shielding Performance of Hybrid Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2024, 38(1): 61-70.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[9] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
No Suggested Reading articles found!