|
|
|
| Performance of Interlayer Toughened Carbon Fiber/Epoxy Composites of Polyethersulfone Porous Fiber Veil |
LI Zhaoyang1,2, XUE Yi1,2, YANG Zehao1,2, ZHAO Qingzhi1,2, PENG Yanshuang1,2, LIU Yong1,2, YANG Jianping1, ZHANG Hui1,2( ) |
1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, School of Materials Science and Engineering, Donghua University, Shanghai 201620, China 2 Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China |
|
Cite this article:
LI Zhaoyang, XUE Yi, YANG Zehao, ZHAO Qingzhi, PENG Yanshuang, LIU Yong, YANG Jianping, ZHANG Hui. Performance of Interlayer Toughened Carbon Fiber/Epoxy Composites of Polyethersulfone Porous Fiber Veil. Chinese Journal of Materials Research, 2024, 38(1): 33-42.
|
|
|
Abstract In order to improve the interlaminar toughness of carbon fiber/epoxy (CF/EP) composites, polyethersulfone (PES) porous fibers were prepared by wet spinning, and four PES porous fiber veils (PESV) with different areal densities were prepared by wet-laid method, which were subsequently used for interlaminar toughening of CF/EP composites by vacuum-assisted resin infusion molding (VARI). The dissolution behavior of PES porous fibers in epoxy resin, the mode I (GIC) and mode II (GIIC) interlaminar fracture toughness, the interlaminar shear strength and flexural properties of the composites were systematically examined, and the interlaminar fracture microscopic morphology of the composites was also characterized. The results showed that the PES porous fibers were completely dissolved in the epoxy resin at the curing temperature of 180oC; The GIC and GIIC of CF/EP composites were best at the areal density of 31.6 g/m2, which increased by 54.4% and 62.2%, respectively, which may be ascribed to that the phase separation of PES porous fibers dissolved in epoxy resin resulted in a two-phase PES/epoxy structure, thereby, improved the interlayer toughness; The interlaminar shear strength, flexural strength and flexural modulus of CF/EP composites also increased by 2.9%, 4.0% and 7.7%, respectively, for the areal density of 21.9 g/m2.
|
|
Received: 09 December 2022
|
|
|
| Fund: Shanghai Commission of Science and Technology "Science and Technology Innovation Action Plan"(20511107300);National Key Research and Development Program of China(2022YFB3709202) |
Corresponding Authors:
ZHANG Hui, Tel: 13681792738, E-mail: zhanghui@dhu.edu.cn
|
| 1 |
Jiang S C, Bao J W, Zhang L W, et al. Research progress of liquid molding resin matrix composites and its technology [J]. Aeronaut. Manuf. Technol., 2021, 64(5): 70
|
|
蒋诗才, 包建文, 张连旺 等.液体成型树脂基复合材料及其工艺研究进展 [J]. 航空制造技术, 2021, 64(5): 70
|
| 2 |
Li P X, Chen P, Su J Z, et al. The recent development of advanced liquid composite molding technique and its application in aviation [J]. Fiber Reinf. Plast/Compos., 2016, (8): 99
|
|
李培旭, 陈 萍, 苏佳智 等.复合材料先进液体成型技术的航空应用与最新发展 [J]. 玻璃钢/复合材料, 2016, (8): 99
|
| 3 |
Jayan J S, Saritha A, Joseph K.Innovative materials of this era for toughening the epoxy matrix: a review [J]. Polym. Compos., 2018, 39(S4): E1959
|
| 4 |
Kolednik O, Kasberger R, Sistaninia M, et al. Development of damage-tolerant and fracture-resistant materials by utilizing the material inhomogeneity effect [J]. J. Appl. Mech., 2019, 86(11): 111004
doi: 10.1115/1.4043829
|
| 5 |
Yi X S, Xu Y H, Cheng Q F, et al. Development of studies on polymer matrix aircraft composite materials highly toughened [J]. Sci. Technol. Rev., 2008, 26(6): 84
|
|
益小苏, 许亚洪, 程群峰 等.航空树脂基复合材料的高韧性化研究进展 [J]. 科技导报, 2008, 26(6): 84
|
| 6 |
Lu K Y, Zhang Y Y, Yang X P, et al. Research development of interlaminar reinforcing and toughening technique of carbon fiber composites [J]. Aeronaut. Manuf. Technol., 2020, 63(18): 14
|
|
卢康逸, 张月义, 杨小平 等.碳纤维复合材料层间增强增韧技术研究进展 [J]. 航空制造技术, 2020, 63(18): 14
|
| 7 |
Zhao Z H, Sun J S, Guo Y, et al. Improving interlaminar toughness of carbon fiber/phthalonitrile composite via polyimide [J]. Acta Mater. Compos. Sin., 2021, 38(3): 732
|
|
赵泽华, 孙劲松, 郭 颖 等.聚酰亚胺颗粒层间增韧碳纤维/邻苯二甲腈树脂复合材料 [J]. 复合材料学报, 2021, 38(3): 732
|
| 8 |
Yi X S, Xu Y H, Cheng Q F, et al. Interlaminar toughness and characteristic morphology of laminated graphite composites interlaminar-toughened [J]. Chin. J. Mater. Res., 2008, 22(4): 337
|
|
益小苏, 许亚洪, 程群峰 等.层间韧化的碳纤维复合材料层压板的力学性能 [J]. 材料研究学报, 2008, 22(4): 337
|
| 9 |
İnal O, Akbolat M Ç, Soutis C, et al. Toughening mechanisms in cost-effective carbon-epoxy laminates with thermoplastic veils: mode-I and in-situ SEM fracture characterisation [J]. Int. J. Lightweight Mater. Manuf., 2021, 4(1): 50
|
| 10 |
Quan D, Bologna F, Scarselli G, et al. Mode-II fracture behaviour of aerospace-grade carbon fibre/epoxy composites interleaved with thermoplastic veils [J]. Compos. Sci. Technol., 2020, 191: 108065
doi: 10.1016/j.compscitech.2020.108065
|
| 11 |
Quan D, Bologna F, Scarselli G, et al. Interlaminar fracture toughness of aerospace-grade carbon fibre reinforced plastics interleaved with thermoplastic veils [J]. Composites, 2020, 128A: 105642
|
| 12 |
Wong D W Y, Zhang H, Bilotti E, et al. Interlaminar toughening of woven fabric carbon/epoxy composite laminates using hybrid aramid/phenoxy interleaves [J]. Composites, 2017, 101A: 151
|
| 13 |
Wang W T, Yu H N, Potter K, et al. Effect of the characteristics of nylon microparticles on Mode-I interlaminar fracture toughness of carbon-fibre/epoxy composites [J]. Composites, 2020, 138A: 106073
|
| 14 |
Huang Y, Liu W S, Jiang Q R, et al. Interlaminar fracture toughness of carbon-fiber-reinforced epoxy composites toughened by poly(phenylene oxide) particles [J]. ACS Appl. Polym. Mater., 2020, 2(8): 3114
doi: 10.1021/acsapm.0c00285
|
| 15 |
Cheng C, Zhang C Y, Zhou J L, et al. Improving the interlaminar toughness of the carbon fiber/epoxy composites via interleaved with polyethersulfone porous films [J]. Compos. Sci. Technol., 2019, 183: 107827
doi: 10.1016/j.compscitech.2019.107827
|
| 16 |
Yao J W, Liu M Y, Niu Y F. Mechanical properties of PEK-C interlayer toughened carbon fiber/epoxy composites [J]. Acta Mater. Compos. Sin., 2019, 36(5): 1083
|
|
姚佳伟, 刘梦瑶, 牛一凡.PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能 [J]. 复合材料学报, 2019, 36(5): 1083
|
| 17 |
Kang S F, Li J, Qu L, et al. Preparation and mechanical properties of taekifying-toughening carbon fiber composites by copolyester non-woven veils [J]. Compos. Sci. Eng., 2020, (4): 53
|
|
康少付, 李 进, 瞿 立 等.共聚酯无纺布定型-增韧碳纤维复合材料的制备及力学性能 [J]. 复合材料科学与工程, 2020, (4): 53
|
| 18 |
Cheng C, Chen Z G, Huang Z, et al. Simultaneously improving mode I and mode II fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned PES fiber webs [J]. Composites, 2020, 129A: 105696
|
| 19 |
Beylergil B, Tanoğlu M, Aktaş E.Effect of polyamide-6,6 (PA 66) nonwoven veils on the mechanical performance of carbon fiber/epoxy composites [J]. Compos. Struct., 2018, 194: 21
doi: 10.1016/j.compstruct.2018.03.097
|
| 20 |
Hansen C M.The three dimensional solubility parameter-key to paint component affinities: I. Solvents, plasticizers, polymers, and resins [J]. J. Paint. Technol., 1967, 39(505): 104
|
| 21 |
Hansen C M.The three dimensional solubility parameter-key to paint component affinities: solvents, plasticizers, polymers, and resins. II. Dyes, emulsifiers, mutual solubility and compatibility, and pigments. III. Independent cal-culation of the parameter components [J]. J. Paint. Technol., 1967, 39(505): 505
|
| 22 |
Hansen C M. Hansen Solubility Parameters: A User's Handbook [M]. Boca Raton: CRC Press, 2007
|
| 23 |
Kılıçoğlu M, Bat E, Gündüz G, et al. Fibers of thermoplastic polymer blends activate multiple interlayer toughening mechanisms [J]. Composites, 2022, 158A: 106982
|
| 24 |
He Y X, Li Q, Kuila T, et al. Micro-crack behavior of carbon fiber reinforced thermoplastic modified epoxy composites for cryogenic applications [J]. Composites, 2013, 44B(1) : 533
|
| 25 |
Wong D W Y, Lin L, McGrail P T, et al. Improved fracture toughness of carbon fibre/epoxy composite laminates using dissolvable thermoplastic fibres [J]. Composites, 2010, 41A(6) : 759
|
| 26 |
Yao J W, Zhang T, Niu Y F.Effect of curing time on phase morphology and fracture toughness of PEK-C film interleaved carbon fibre/epoxy composite laminates [J]. Compos. Struct., 2020, 248: 112550
doi: 10.1016/j.compstruct.2020.112550
|
| 27 |
Quan D, Wang G L, Zhao G Q, et al. On the interlayer toughening of carbon fibre/epoxy composites using surface-activated ultra-thin PEEK films [J]. Compos. Struct., 2023, 303: 116309
doi: 10.1016/j.compstruct.2022.116309
|
| 28 |
Zhang D J, Bao J W, Zhong X Y, et al. Preparation and properties of carbon fiber reinforced epoxy resin Composites interlaminate-toughened by polyethersulfone ultrafine-fiber non-woven fabric [J]. Acta Mater. Compos. Sin., 2022, 39(8): 3767
|
|
张代军, 包建文, 钟翔屿 等.聚醚砜超细纤维无纺布层间增韧碳纤维/环氧树脂复合材料制备与表征 [J]. 复合材料学报, 2022, 39(8): 3767
|
| 29 |
Zhou J L, Zhang C Y, Cheng C, et al. Synergetic improvement of interlaminar fracture toughness in carbon fiber/epoxy composites interleaved with PES/PEK-C hybrid nanofiber veils [J]. Adv. Fiber Mater., 2022, 4(5): 1081
doi: 10.1007/s42765-022-00160-9
|
| 30 |
Sun Z Y, Xu L, Chen Z G, et al. Enhancing the mechanical and thermal properties of epoxy resin via blending with thermoplastic polysulfone [J]. Polymers, 2019, 11(3): 461
doi: 10.3390/polym11030461
|
| 31 |
Jiang M Q, Liu Y, Cheng C, et al. Enhanced mechanical and thermal properties of monocomponent high performance epoxy resin by blending with hydroxyl terminated polyethersulfone [J]. Polym. Test., 2018, 69: 302
doi: 10.1016/j.polymertesting.2018.05.039
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|