|
|
Microstructure and Properties of Butt Welding Joints of 2195-2219 Al-alloy Plates |
NIE Jingjing, GONG Zhengxuan, SUN Jingli( ), YANG Sida, XIA Xianchao, XU Aijie |
Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China |
|
Cite this article:
NIE Jingjing, GONG Zhengxuan, SUN Jingli, YANG Sida, XIA Xianchao, XU Aijie. Microstructure and Properties of Butt Welding Joints of 2195-2219 Al-alloy Plates. Chinese Journal of Materials Research, 2023, 37(2): 152-160.
|
Abstract Butt welding joints of 2195 and 2219 Al-alloy plates were prepared by tungsten argon arc welding (TIG) and variable polarity plasma arc welding (VPPA) respectively while applying argon shielding and no argon shielding, and then the influence of processing parameters on the microstructure of the welding joints were assessed by means of metallographic microscope, scanning electron microscope (SEM), hardness tester and tensile testing machine. The results show that no macroscopic thermal cracks were detected in the welding seam of the joints prepared by TIG and VPPA welding processes, however the VPPA welding process results in narrower welding seam due to its high speed processing with low heat input whilst high energy density. The main precipitates near the fusion line of the weld joints are θ-phase, while eutectic microstructure of α-Al and θ-phase exists in the weld seam. No local softening existed in welded joints prepared by TIG and VPPA with argon shielding, correspondingly, the hardness of the weld seam is more or less the same as that of the base metal of 2219 Al-alloy side, and the welding joints prepared by TIG possess higher tensile strength.
|
Received: 17 January 2022
|
|
About author: SUN Jingli, Tel: (021)37842971, E-mail: Sunjingli1221@126.com
|
1 |
Deng Y L, Zhang X M. Progress of aluminum and aluminum alloy materials [J]. Trans. Nonferrous Met. Soc.China, 2019, 29 (9): 2115
|
|
邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29(9): 2115
|
2 |
Zhao H H, Gao H, Hu L, et al. Optimization of drawing friction plug welding process and mechanical properties of 2219 aluminum alloy sheet [J]. China Weld., 2021, 6: 48
|
|
赵慧慧, 高 焓, 胡 蓝 等. 2219铝合金薄板拉拔式摩擦塞焊工艺及力学性能优化 [J]. 焊接, 2021, 6: 48
|
3 |
Chen S, Zhang H, Jiang X, et al. Mechanical properties of electric assisted friction stir welded 2219 aluminum alloy [J]. J. Manuf. Process., 2019, 44: 197
doi: 10.1016/j.jmapro.2019.05.049
|
4 |
Wang X L, Wei Y H. Application and development of metal matrix composites in aerospace [J]. Sci. Technol. Innovation. Herald, 2016, 13(6): 16
|
|
王秀丽, 巍永辉. 浅谈金属基复合材料在航空航天领域的应用与发展 [J]. 科技创新导报, 2016, 13(6): 16
|
5 |
Tang J M. Development status and prospect of aerospace materials [J]. Spacecr. Environ. Eng., 2013, 30(2): 115
|
|
唐见茂. 航空航天材料发展现状及前景 [J]. 航天器环境工程, 2013, 30(2): 115
|
6 |
Wu X L, Liu M, Zang J X, et al. Research progress of Al Li alloys and aerospace applications [J]. Mater. Rep., 2016, 30 (S2): 571
|
|
吴秀亮, 刘 铭, 臧金鑫 等. 铝锂合金研究进展和航空航天应用 [J]. 材料导报, 2016, 30(S2): 571
|
7 |
Kablov E N, Antipov V V, Oglodkova J S, et al. Development and application prospects of aluminum-lithium alloys in aircraft and space technology [J]. Metallurgist, 2021, 65(1-2): 72
doi: 10.1007/s11015-021-01134-9
|
8 |
Yuan J, Pang J, Xie G, et al. In situ observation of high-temperature microstructure evolution and phase transformation of 2195 Al-Li alloy [J]. Metall. Mater. Trans. A, 2019, 50(3): 1509
doi: 10.1007/s11661-018-05106-8
|
9 |
Fang Z, Wang F, Yin Y H, et al. Microstructure and properties of 2195/2219 dissimilar friction stir welded joints [J]. Rare Met. Mater. Eng., 2017, 46 (7): 2017
|
|
房 湛, 王 凡, 尹玉环 等. 2195/2219异种材料搅拌摩擦焊接头的组织与性能 [J]. 稀有金属材料与工程, 2017, 46(7): 2017
|
10 |
Chen Y L, Li J F, Zhang X H, et al. Microstructure of 2195 Al Li alloy friction stir welded joint [J]. Trans. Nonferrous Met. Soc. China, 2016, 26(5): 964
|
|
陈永来, 李劲风, 张绪虎 等. 2195铝锂合金摩擦搅拌焊接头组织 [J]. 中国有色金属学报, 2016, 26(5): 964
|
11 |
Wang H L, Zeng X H, Zhang X M, et al. Microstructure and mechanical property of friction stir weld joints of dissimilar Al-alloys 5083 and 6061 [J]. Chin. J. Mater. Res., 2018, 32(6): 473
doi: 10.11901/1005.3093.2017.634
|
|
王洪亮, 曾祥浩, 张欣盟 等. 5083和6061铝合金异种搅拌摩擦焊接接头的组和性能 [J]. 材料研究学报, 2018, 32(6): 473
doi: 10.11901/1005.3093.2017.634
|
12 |
Agilan M, Phanikumar G, Sivakumar D. Tensile behaviour and microstructure evolution in friction stir welded 2195-2219 dissimilar aluminium alloy joints [J]. Weld World, 2022, 66(2): 227
doi: 10.1007/s40194-021-01217-w
|
13 |
Tao Y, Zhang Z, Yu B H, et al. Friction stir welding of 2060-T8 Al-Li alloy. Part I: Microstructure evolution mechanism and mechanical properties [J]. Mater. Charact., 2020, 168
|
14 |
Zhang H, Qin H L, Wu H Q. Effect of process parameters on mechanical properties of 2195 Al Li alloy friction stir welded joint [J]. Trans. China Weld. Inst., 2016, 37(4): 19
|
|
张 华, 秦海龙, 吴会强. 工艺参数对2195铝锂合金搅拌摩擦焊接头力学性能的影响 [J]. 焊接学报, 2016, 37(4): 19
|
15 |
Chu Q, Li W Y, Yang X W, et al. Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al-Li alloy [J]. J. Mater. Sci. Technol., 2018, 34(10): 1739
doi: 10.1016/j.jmst.2018.03.009
|
16 |
Ogbonna O S, Akinlabi S A, Madushele N, et al. Application of MIG and TIG welding in automobile industry [J]. J. Phys.: Conf. Ser., 2019, 1378(4): 042065
|
17 |
Yan Z, Chen S, Jiang F, et al. Control of gravity effects on weld porosity distribution during variable polarity plasma arc welding of aluminum alloys [J]. J. Mater. Process. Technol., 2020, 282: 116693
doi: 10.1016/j.jmatprotec.2020.116693
|
18 |
Zhang D, Wang G, Wu A, et al. Study on the inconsistency in mechanical properties of 2219 aluminium alloy TIG-welded joints [J]. J. Alloys Compd., 2019, 777: 1044
doi: 10.1016/j.jallcom.2018.10.182
|
19 |
Hong H, Han Y, Yao Q, et al. Microstructural investigation of VPPA-GMAW welded 7A52 aluminum alloys [J]. J. Mater. Eng. Perform., 2018, 27(10): 5571
doi: 10.1007/s11665-018-3450-3
|
20 |
Chen Q H, Lin S B, Yang C L, et al. Effect of ultrasound on heterogeneous nucleation in TIG welding of Al-Li alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29(12): 1081
doi: 10.1007/s40195-016-0483-1
|
21 |
Li Y B, Meng D Q, Liu K Z, et al. Simulation of microstructure evolution during solidification of welding pool [J]. Trans. China Weld. Inst., 2010, 31(4): 57
|
|
李玉斌, 蒙大桥, 刘柯钊 等. 焊接熔池凝固过程组织演变模拟 [J]. 焊接学报, 2010, 31(4): 57
|
22 |
Chen L, Wang C, Mi G, et al. Effects of laser oscillating frequency on energy distribution, molten pool morphology and grain structure of AA6061/AA5182 aluminum alloys lap welding [J]. J. Mater. Res. Technol., 2021, 15: 3133
doi: 10.1016/j.jmrt.2021.09.141
|
23 |
Yuan L L, Wang W, Chen X Y. Research progress of 2195 aluminum lithium welding technology [J]. China Weld., 2020, 9: 38
|
|
元琳琳, 王 炜, 陈晓宇. 2195铝锂焊接焊接技术研究进展 [J]. 焊接, 2020, 9: 38
|
24 |
Li H, Zou J, Yao J, et al. The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy [J]. J. Alloys Compd., 2017, 727: 531
doi: 10.1016/j.jallcom.2017.08.157
|
25 |
Peng H M, Li X Q, Jiang R P. Effect of solution ultrasonic treatment on micro segregation of 7050 aluminum alloy ingot [J]. Trans. Beijing Inst. Technol., 2016, 36 (11): 1105
|
|
彭洪美, 李晓谦, 蒋日鹏. 溶体超声处理对7050铝合金铸锭微观偏析的影响 [J]. 北京理工大学学报, 2016, 36(11): 1105
|
26 |
Zobac O, Kroupa A, Zemanova A, et al. Experimental description of the Al-Cu binary phase diagram [J]. Metall. Mater. Trans. A, 2019, 50(8): 3805
doi: 10.1007/s11661-019-05286-x
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|