Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (2): 152-160    DOI: 10.11901/1005.3093.2022.057
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Properties of Butt Welding Joints of 2195-2219 Al-alloy Plates
NIE Jingjing, GONG Zhengxuan, SUN Jingli(), YANG Sida, XIA Xianchao, XU Aijie
Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
Cite this article: 

NIE Jingjing, GONG Zhengxuan, SUN Jingli, YANG Sida, XIA Xianchao, XU Aijie. Microstructure and Properties of Butt Welding Joints of 2195-2219 Al-alloy Plates. Chinese Journal of Materials Research, 2023, 37(2): 152-160.

Download:  HTML  PDF(33866KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Butt welding joints of 2195 and 2219 Al-alloy plates were prepared by tungsten argon arc welding (TIG) and variable polarity plasma arc welding (VPPA) respectively while applying argon shielding and no argon shielding, and then the influence of processing parameters on the microstructure of the welding joints were assessed by means of metallographic microscope, scanning electron microscope (SEM), hardness tester and tensile testing machine. The results show that no macroscopic thermal cracks were detected in the welding seam of the joints prepared by TIG and VPPA welding processes, however the VPPA welding process results in narrower welding seam due to its high speed processing with low heat input whilst high energy density. The main precipitates near the fusion line of the weld joints are θ-phase, while eutectic microstructure of α-Al and θ-phase exists in the weld seam. No local softening existed in welded joints prepared by TIG and VPPA with argon shielding, correspondingly, the hardness of the weld seam is more or less the same as that of the base metal of 2219 Al-alloy side, and the welding joints prepared by TIG possess higher tensile strength.

Key words:  metallic materials      aluminum alloy      2195      2219      welded joint      microstructure      mechanical property     
Received:  17 January 2022     
ZTFLH:  TG406  
About author:  SUN Jingli, Tel: (021)37842971, E-mail: Sunjingli1221@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.057     OR     https://www.cjmr.org/EN/Y2023/V37/I2/152

ElementCuSiMnFeZrVTiMgLiAgAl
21953.84--0.040.10--0.480.910.39Bal.
22196.480.490.320.230.20.080.06---Bal.
23253.6~4.20.060.5~0.70.06---1.0~1.5--Bal.
Table 1  Composition of base metal and welding wire (mass fraction, %)
Sample No.Welding methodProcess parameters
1#TIG welding with two layers on the front and one layer back sealingWelding current 180~220 A, arc length 4 mm, welding speed 200 mm·min-1
2#VPPA welding on the front with back sealing by TIG weldingPositive current 207 A, negative current 243 A, welding speed 200 mm·min-1, argon flow 25 L·min-1, back sealing weld current 180 A
3#VPPA welding without argon protection and sealing on the backPositive current 207 A, negative current 243 A, welding speed 200 mm·min-1
Table 2  Welding method and process parameters
Fig.1  Metallographic of 1# sample at different locations (a) overall morphology of the welded joint; (b) 2195 base metal; (c) connection between 2195 side and weld zone; (d) weld center zone; (e) connection between 2219 side and weld zone; (f) connection zone between reverse side and weld
Fig.2  Metallographic of 2# sample at different locations(a) overall morphology of the welded joint; (b) 2195 base metal; (c) connection between 2195 side and weld zone; (d) weld center zone; (e) connection between 2219 side and weld zone; (f) connection zone between reverse side and weld
Fig.3  Metallographic of 3# sample at different locations (a) overall morphology of the welded joint; (b) connection between 2195 side and weld zone; (c) weld center zone; (d) connection between 2219 side and weld zone; (e) 2219 base metal
Fig.4  Microstructure near the fusion line of 1# sample 2195 side (a) and EDS results of Al, Cu, Mg, Li and C (b~f)
Fig.5  Microstructure near fusion line of different samples (a) 1# sample; (b) 2# sample; (c) 3# sample; (a2) (b2) and (c2) enlarged views of the corresponding areas of (a1) (a1) and (c1)
ElementAlCuMgCOAgZr
Point 188.23.80.46.01.30.40.0
Point 247.834.20.513.53.70.30.1
Point 388.44.40.46.10.50.20.0
Point 452.531.00.411.44.10.60.0
Point 586.23.10.39.01.30.00.0
Point 651.431.90.412.73.20.50.0
Table 3  Composition at different locations in Fig.5 (mass fraction, %)
Fig.6  Microstructure of weld zone of different samples (a) 1# sample; (b) 2# sample; (c) 3# sample; (a2) (b2) and (c2) are enlarged views of the corresponding areas of (a1) (a1) and (c1)
ElementAlCuMgCOAgZr
Point 190.22.10.16.60.80.10.1
Point 241.446.80.37.44.20.00.0
Point 325.147.90.115.19.90.20.2
Point 489.82.80.06.20.70.20.2
Point 563.021.40.212.03.10.20.2
Point 632.352.00.26.76.41.60.2
Point 787.51.70.09.70.90.00.3
Point 835.345.50.313.94.80.00.3
Point 944.637.80.212.54.60.10.2
Table 4  Composition at different locations in Fig.6 (mass fraction, %)
Fig.7  Mechanical properties of samples welded by different methods
Fig.8  Morphology of welded joints welded by different methods after tensile test (a) 1# sample; (b) 2# sample; (c) 3# sample
Fig.9  Microhardness distribution of samples welded by different methods
1 Deng Y L, Zhang X M. Progress of aluminum and aluminum alloy materials [J]. Trans. Nonferrous Met. Soc.China, 2019, 29 (9): 2115
邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29(9): 2115
2 Zhao H H, Gao H, Hu L, et al. Optimization of drawing friction plug welding process and mechanical properties of 2219 aluminum alloy sheet [J]. China Weld., 2021, 6: 48
赵慧慧, 高 焓, 胡 蓝 等. 2219铝合金薄板拉拔式摩擦塞焊工艺及力学性能优化 [J]. 焊接, 2021, 6: 48
3 Chen S, Zhang H, Jiang X, et al. Mechanical properties of electric assisted friction stir welded 2219 aluminum alloy [J]. J. Manuf. Process., 2019, 44: 197
doi: 10.1016/j.jmapro.2019.05.049
4 Wang X L, Wei Y H. Application and development of metal matrix composites in aerospace [J]. Sci. Technol. Innovation. Herald, 2016, 13(6): 16
王秀丽, 巍永辉. 浅谈金属基复合材料在航空航天领域的应用与发展 [J]. 科技创新导报, 2016, 13(6): 16
5 Tang J M. Development status and prospect of aerospace materials [J]. Spacecr. Environ. Eng., 2013, 30(2): 115
唐见茂. 航空航天材料发展现状及前景 [J]. 航天器环境工程, 2013, 30(2): 115
6 Wu X L, Liu M, Zang J X, et al. Research progress of Al Li alloys and aerospace applications [J]. Mater. Rep., 2016, 30 (S2): 571
吴秀亮, 刘 铭, 臧金鑫 等. 铝锂合金研究进展和航空航天应用 [J]. 材料导报, 2016, 30(S2): 571
7 Kablov E N, Antipov V V, Oglodkova J S, et al. Development and application prospects of aluminum-lithium alloys in aircraft and space technology [J]. Metallurgist, 2021, 65(1-2): 72
doi: 10.1007/s11015-021-01134-9
8 Yuan J, Pang J, Xie G, et al. In situ observation of high-temperature microstructure evolution and phase transformation of 2195 Al-Li alloy [J]. Metall. Mater. Trans. A, 2019, 50(3): 1509
doi: 10.1007/s11661-018-05106-8
9 Fang Z, Wang F, Yin Y H, et al. Microstructure and properties of 2195/2219 dissimilar friction stir welded joints [J]. Rare Met. Mater. Eng., 2017, 46 (7): 2017
房 湛, 王 凡, 尹玉环 等. 2195/2219异种材料搅拌摩擦焊接头的组织与性能 [J]. 稀有金属材料与工程, 2017, 46(7): 2017
10 Chen Y L, Li J F, Zhang X H, et al. Microstructure of 2195 Al Li alloy friction stir welded joint [J]. Trans. Nonferrous Met. Soc. China, 2016, 26(5): 964
陈永来, 李劲风, 张绪虎 等. 2195铝锂合金摩擦搅拌焊接头组织 [J]. 中国有色金属学报, 2016, 26(5): 964
11 Wang H L, Zeng X H, Zhang X M, et al. Microstructure and mechanical property of friction stir weld joints of dissimilar Al-alloys 5083 and 6061 [J]. Chin. J. Mater. Res., 2018, 32(6): 473
doi: 10.11901/1005.3093.2017.634
王洪亮, 曾祥浩, 张欣盟 等. 5083和6061铝合金异种搅拌摩擦焊接接头的组和性能 [J]. 材料研究学报, 2018, 32(6): 473
doi: 10.11901/1005.3093.2017.634
12 Agilan M, Phanikumar G, Sivakumar D. Tensile behaviour and microstructure evolution in friction stir welded 2195-2219 dissimilar aluminium alloy joints [J]. Weld World, 2022, 66(2): 227
doi: 10.1007/s40194-021-01217-w
13 Tao Y, Zhang Z, Yu B H, et al. Friction stir welding of 2060-T8 Al-Li alloy. Part I: Microstructure evolution mechanism and mechanical properties [J]. Mater. Charact., 2020, 168
14 Zhang H, Qin H L, Wu H Q. Effect of process parameters on mechanical properties of 2195 Al Li alloy friction stir welded joint [J]. Trans. China Weld. Inst., 2016, 37(4): 19
张 华, 秦海龙, 吴会强. 工艺参数对2195铝锂合金搅拌摩擦焊接头力学性能的影响 [J]. 焊接学报, 2016, 37(4): 19
15 Chu Q, Li W Y, Yang X W, et al. Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al-Li alloy [J]. J. Mater. Sci. Technol., 2018, 34(10): 1739
doi: 10.1016/j.jmst.2018.03.009
16 Ogbonna O S, Akinlabi S A, Madushele N, et al. Application of MIG and TIG welding in automobile industry [J]. J. Phys.: Conf. Ser., 2019, 1378(4): 042065
17 Yan Z, Chen S, Jiang F, et al. Control of gravity effects on weld porosity distribution during variable polarity plasma arc welding of aluminum alloys [J]. J. Mater. Process. Technol., 2020, 282: 116693
doi: 10.1016/j.jmatprotec.2020.116693
18 Zhang D, Wang G, Wu A, et al. Study on the inconsistency in mechanical properties of 2219 aluminium alloy TIG-welded joints [J]. J. Alloys Compd., 2019, 777: 1044
doi: 10.1016/j.jallcom.2018.10.182
19 Hong H, Han Y, Yao Q, et al. Microstructural investigation of VPPA-GMAW welded 7A52 aluminum alloys [J]. J. Mater. Eng. Perform., 2018, 27(10): 5571
doi: 10.1007/s11665-018-3450-3
20 Chen Q H, Lin S B, Yang C L, et al. Effect of ultrasound on heterogeneous nucleation in TIG welding of Al-Li alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29(12): 1081
doi: 10.1007/s40195-016-0483-1
21 Li Y B, Meng D Q, Liu K Z, et al. Simulation of microstructure evolution during solidification of welding pool [J]. Trans. China Weld. Inst., 2010, 31(4): 57
李玉斌, 蒙大桥, 刘柯钊 等. 焊接熔池凝固过程组织演变模拟 [J]. 焊接学报, 2010, 31(4): 57
22 Chen L, Wang C, Mi G, et al. Effects of laser oscillating frequency on energy distribution, molten pool morphology and grain structure of AA6061/AA5182 aluminum alloys lap welding [J]. J. Mater. Res. Technol., 2021, 15: 3133
doi: 10.1016/j.jmrt.2021.09.141
23 Yuan L L, Wang W, Chen X Y. Research progress of 2195 aluminum lithium welding technology [J]. China Weld., 2020, 9: 38
元琳琳, 王 炜, 陈晓宇. 2195铝锂焊接焊接技术研究进展 [J]. 焊接, 2020, 9: 38
24 Li H, Zou J, Yao J, et al. The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy [J]. J. Alloys Compd., 2017, 727: 531
doi: 10.1016/j.jallcom.2017.08.157
25 Peng H M, Li X Q, Jiang R P. Effect of solution ultrasonic treatment on micro segregation of 7050 aluminum alloy ingot [J]. Trans. Beijing Inst. Technol., 2016, 36 (11): 1105
彭洪美, 李晓谦, 蒋日鹏. 溶体超声处理对7050铝合金铸锭微观偏析的影响 [J]. 北京理工大学学报, 2016, 36(11): 1105
26 Zobac O, Kroupa A, Zemanova A, et al. Experimental description of the Al-Cu binary phase diagram [J]. Metall. Mater. Trans. A, 2019, 50(8): 3805
doi: 10.1007/s11661-019-05286-x
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!