Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (2): 129-135    DOI: 10.11901/1005.3093.2021.566
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance
LUO Yu, CHEN Qiuyun, XUE Lihong(), ZHANG Wuxing, YAN Youwei
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong Universtiy of Scienc and Technology, Wuhan 430074, China
Cite this article: 

LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance. Chinese Journal of Materials Research, 2023, 37(2): 129-135.

Download:  HTML  PDF(5955KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Double-layer carbon coated Na3V2(PO4)3 (NVP), as cathode material for sodium-ion batteries, was successfully synthesized by ultrasonic-assisted solution combustion synthesis, and its structure, morphology and electrochemical properties were investigated. The results show that the surface of NVP particles is firstly coated with an amorphous hard carbon layer, subsequently with a graphene layer. When the graphene content is 5.0%, the carbon-coated NVP composite exhibits excellent electrochemical properties. It delivers an initial discharge capacity of 117 mAh·g–1 at 1 C, and retains 79% of the initial capacity after 300 cycles. Even at 10 C, it still maintains a discharge capacity as high as 100 mAh·g–1. The significant improvement of the sodium storage performance can be ascribed to the special structure of homogeneous double-layer carbon coating, which can act as a 3-dimentional network as electron pathway.

Key words:  composite      C@Na3V2(PO4)3      ultrasonic-assisted solution combustion      Na-ion battery     
Received:  28 September 2021     
ZTFLH:  TM911  
Fund: National Key Research and Development Program of China(2016YFB0100302)
About author:  XUE Lihong, Tel: 13667116231,E-mail: xuelh@hust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.566     OR     https://www.cjmr.org/EN/Y2023/V37/I2/129

Fig.1  XRD patterns of carbon-coated NVP
Fig.2  Raman spectra of carbon-coated NVP
Fig.3  TEM image of graphene nanosheets
Fig.4  SEM images of carbon-coated NVP (a) 0.0%; (b) 2.5%; (c) 5.0%
Fig.5  HRTEM images of NVP with different GO contents (a, d) 0.0%; (b, e) 2.5%; (c, f) 5.0%
Fig.6  Nitrogen adsorption/desorption isotherms of NVP with different GO contents. Inset: the pore-size distribution plot calculated by the BJH method in the adsorption branch isotherm
Fig.7  Electrochemical impedance spectroscopy with different GO contents
Fig.8  Electrochemical performance of NVP with different GO contents (a) charge-discharge profiles at 1 C; (b) cycling performance at 1 C; (c) coulombic efficiency of NVP (GO: 5.0%) at 1 C; (d) rate capability at various current rates from 1 C to 10 C
1 Saravanan K, Mason C W, Rudola A, et al. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries [J]. Adv. Energy Mater., 2013, 3(4): 444
doi: 10.1002/aenm.201200803
2 Song W X, Ji X B, Wu Z P, et al. First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3 [J]. J. Mater. Chem., 2014, 2A(15) : 5358
3 Jian Z L, Han W Z, Lu X, et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries [J]. Adv. Energy Mater., 2013, 3(2): 156
doi: 10.1002/aenm.201200558
4 Zhang B W, Ma K X, Lv X, et al. Recent advances of NASICON-Na3V2(PO4)3 as cathode for sodium-ion batteries: synthesis, modifications, and perspectives [J]. J. Alloys Compd., 2021, 867: 159060
doi: 10.1016/j.jallcom.2021.159060
5 Wang E H, Chen M Z, Liu X H, et al. Organic cross-linker enabling a 3D porous skeleton-supported Na3V2(PO4)3/carbon composite for high power sodium-ion battery cathode [J]. Small, 2018, 3: 1800169
6 Cao X X, Pan A Q, Yin B, et al. Nanoflake-constructed Porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications [J]. Nano Energy, 2019, 60: 312
doi: 10.1016/j.nanoen.2019.03.066
7 Zhang J X, Fang Y J, Xiao L F, et al. Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries [J]. ACS Appl. Mater. Interfaces, 2017, 9: 7177
doi: 10.1021/acsami.6b16000
8 Xu J Y, Gu E L, Zhang Z Z, et al. Fabrication of porous Na3V2(PO4)3/reduced graphene oxide hollow spheres with enhanced sodium storage performance [J]. J. Colloid Interface Sci., 2020, 567: 84
doi: 10.1016/j.jcis.2020.01.121
9 Wang H, Jiang D L, Zhang Y, et al. Self-combustion synthesis of Na3V2(PO4)3 nanoparticles coated with carbon shell as cathode materials for sodium-ion batteries [J]. Electrochim. Acta, 2015, 155: 23
doi: 10.1016/j.electacta.2014.12.160
10 Väli R, Aruväli J, Härmas M, et al. Glycine-nitrate process for synthesis of Na3V2(PO4)3 cathode material and optimization of glucose-derived hard carbon anode material for characterization in full cells [J]. Batteries, 2019, 5(3): 56
doi: 10.3390/batteries5030056
11 Salehi A H, Masoudpanah S M, Hasheminiasari M, et al. A solution synthesis of Na3V2(PO4)3 cathode for sodium storage by using CTAB additive [J]. Solid State Ion., 2020, 347: 115269
doi: 10.1016/j.ssi.2020.115269
12 Li N L, Tong Y W, Yi D W, et al. 3D interconnected porous carbon coated Na3V2(PO4)3/C composite cathode materials for sodium-ion batteries [J]. Ceram. Int., 2020, 46(17): 27493
doi: 10.1016/j.ceramint.2020.07.238
13 Sancheti S V, Gogate P R. A review of engineering aspects of intensification of chemical synthesis using ultrasound [J]. Ultrason. Sonochem., 2017, 36: 527
doi: S1350-4177(16)30279-6 pmid: 27567541
14 Harifi T, Montazer M. A review on textile sonoprocessing: a special focus on sonosynthesis of nanomaterials on textile substrates [J]. Ultrason. Sonochem., 2015, 23: 1
doi: 10.1016/j.ultsonch.2014.08.022 pmid: 25216894
15 Que A Z, Zhu T Y, Zheng Y Y. Preparation of hollow magnetic graphene oxide and its adsorption performance for methylene blue [J]. Chin. J. Mater. Res., 2021, 35(7): 517
doi: 10.11901/1005.3093.2020.579
阙爱珍, 朱桃玉, 郑玉婴. 中空磁性氧化石墨烯的制备及其对亚甲基蓝吸附性能 [J]. 材料研究学报, 2021, 35(7): 517
doi: 10.11901/1005.3093.2020.579
16 Suslick K S. Sonochemistry [J]. Science, 1990, 247(4949): 1439
doi: 10.1126/science.247.4949.1439 pmid: 17791211
17 Chen Q Y, Liu Q, Chu X C, et al. Ultrasonic-assisted solution combustion synthesis of Porous Na3V2(PO4)3/C: formation mechanism and sodium storage performance [J]. J. Nanopart. Res., 2017, 19: 146
doi: 10.1007/s11051-017-3828-4
18 Li S, Dong Y F, Xu L, et al. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries [J]. Adv. Mater., 2014, 26(21): 3545
doi: 10.1002/adma.201305522
19 Fang Y J, Xiao L F, Ai X P, et al. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries [J]. Adv. Mater., 2015, 27(39): 5895
doi: 10.1002/adma.201502018
20 Zhu C B, Kopold P, Van Aken P A, et al. High power-high energy sodium battery based on threefold interpenetrating network [J]. Adv. Mater., 2016, 28(12): 2409
doi: 10.1002/adma.201505943
21 Xu Y N, Wei Q L, Xu C, et al. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode [J]. Adv. Energy Mater., 2016, 6(14): 1600389
doi: 10.1002/aenm.201600389
22 Rui X H, Sun W P, Wu C, et al. An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network [J]. Adv. Mater., 2015, 27(42): 6670
doi: 10.1002/adma.201502864
23 Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80(6): 1339
doi: 10.1021/ja01539a017
24 Purushothaman K K, Saravanakumar B, Babu I M, et al. Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors [J]. RSC Adv., 2014, 4(45): 23485
doi: 10.1039/c4ra02107j
25 Zhang J T, Xiong Z G, Zhao X S. Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation [J]. J. Mater. Chem., 2011, 21(11): 3634
doi: 10.1039/c0jm03827j
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!