Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (10): 791-800    DOI: 10.11901/1005.3093.2022.391
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Properties of Graphene-regulated Functional Titanium by Laser Additive Manufacturing
WANG Chunjin, CHEN Wenge(), KANG Ningning, YANG Tao
Xi'an University of Technology, School of Material Science and Engineering, Xi'an 710048, China
Cite this article: 

WANG Chunjin, CHEN Wenge, KANG Ningning, YANG Tao. Microstructure and Properties of Graphene-regulated Functional Titanium by Laser Additive Manufacturing. Chinese Journal of Materials Research, 2023, 37(10): 791-800.

Download:  HTML  PDF(12465KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Porous graphene /Ti(Gr/Ti) composites were fabricated by selective laser melting (SLM) technique with the mixture of Ti powder and graphene as raw material, and the effect of graphene (Gr) addition on the microstructure, mechanical properties and corrosion resistance of porous Gr/Ti composites were investigated. The results show that the macrostructure of the porous Gr/Ti composite is not significantly different from the designed structure, but the porosity is lower than the designed structure. The porous pure titanium prepared by SLM consists of small equiaxed grains, and the grain size of which is further reduced after the addition of graphene, while the graphene uniformly distributed in the Ti-matrix. A small portion of graphene reacts with Ti-matrix leading to the formation of TiC, as a result, the in-situ generated TiC as second phase particles can reinforce the base metal through dispersion strengthening. The compression stress-strain curves of the porous Gr/Ti composite display elastic deformation stage, stress plateau stage and densification stage. The hardness, compressive strength and compression ratio of the porous Gr/Ti composite were 503HV, 317.38 MPa and 42%, respectively. Its corrosion potential and the corrosion current density were -0.325 V and 3.28×10-7 A·cm-2 respectively, indicating a better corrosion resistance in the comparison to the one of pure Ti.

Key words:  metallic meterials      porous Ti      graphene      selective laser melting      microstructure and properties     
Received:  18 July 2022     
ZTFLH:  TG665  
Fund: Xi'an Science Research Project of China(23ZDCYJSGG0042-2002)
Corresponding Authors:  CHEN Wenge, Tel: (029)82312383, E-mail: wgchen001@263.net

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.391     OR     https://www.cjmr.org/EN/Y2023/V37/I10/791

Alloy elementFeOHNCTi
Value0.0400.0610.0010.0100.00899.880
Table 1  Chemical composition of pure titanium powders (mass fraction, %)
Fig.1  SEM images of raw materials (a) Ti powders; (b) GNPs

Purity

/ %

Thickness

/ nm

Conductivity

/ S·m-1

Oxygen content

/ %

Sulphur content

/ %

Impurity content

/ %

specific surface area

/ m2·g-1

>9530~501050.500.500.01100~300
Table 2  Properties of GNPs
Fig.2  Model of porous skeleton model (a) unit cell; (b) unit combination; (c) schematic of the porous structures
Laser power / WLaser scan speed / mm·s-1Layer thicknessmm / μmHatch spacing / μmBeam diameter / μm
70 W800256045
Table 3  SLM process parameters
CaCl2 / gKCl / gNaCl / gH2O / L
0.250.4291
Table 4  Chemical composition of ringers solution
Fig.3  Macrographs of porous Ti and porous Gr/Ti composite (a) parallel to the print direction; (b) perpendicular to the printing direction
Fig.4  SEM images of the fabricated samples by SLM (a) porous Ti along the printing direction; (b) porous Ti perpendicular to the printing direction; (c) porous Gr/Ti along the printing direction; (d) porous Gr/Ti perpendicular to the printing direction
Fig.5  Microstructures of three material (a) bulk titanium; (b) porous Ti; (c) porous Gr/Ti
Fig.6  XRD pattern (a) and Raman spectra (b) of Ti powders, GNPS and different Ti material
Fig.7  TEM and SAED images of porous Gr/Ti composite (a) micro-zone morphologic; (b) dot-like and strip microstructure; (c) flake microstructure; (d) HRTEM of Lamellar microstructure
Fig.8  Compressive stress-strain cures of three Ti material
Fig.9  Compression fracture morphology of three material (a) porous Ti; (b) porous Gr/Ti composite; (c) bulk titanium
Fig.10  Anodic polarization curves (a) and impedance spectra (b) of corrosion resistance porous Gr/Ti composites and porous Ti
1 He X, Wang X F, Wang X L, et al. Research progress in the preparation process of porous titanium materials [J]. Light Ind. Sci. Technol., 2020, 36(9): 69
何 喜, 王晓峰, 王小炼 等. 多孔钛材料制备工艺研究进展 [J]. 轻工科技, 2020, 36(9): 69
2 Singla A K, Banerjee M, Sharma A, et al. Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments [J]. J. Manuf. Process 2021, 64: 161
3 Ats A, Ytb C, Pbp C, et al. Effect of processing parameters on the densification, microstructure and crystallographic texture during the laser powder bed fusion of pure tungsten [J]. Int. J. Refract. Met. Hard Mater., 2019, 78: 254
doi: 10.1016/j.ijrmhm.2018.10.004
4 Attar H, Bönisch M, Calin M, et al. Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties [J]. Acta Mater., 2014, 76: 13
doi: 10.1016/j.actamat.2014.05.022
5 Zhang M L, Chi X T, Zhou C S, et al. Preparation and properties of porous Ti-Nb alloy materials [J]. Kang T'ieh Fan T'ai, 2021, 42(6): 84
张美丽, 叱小彤, 周春生 等. 多孔Ti-Nb合金材料的制备与性能研究 [J]. 钢铁钒钛, 2021, 42(6): 84
6 Chen M, Zhang E, Lan Z. Microstructure, mechanical properties, bio-corrosion properties and antibacterial property of Ti-Ag sintered alloys [J]. Mater. Sci. Eng., C, 2016, 62: 350
7 Chandra Y, Adhikaris S, Saaavedra F E I, et al. Advances in finite element modelling of graphene and associated nanostructures [J]. Mater. Sci. Eng.: R: Reports, 2020, 140: 100544
doi: 10.1016/j.mser.2020.100544
8 Hong J J, He X L, Fu C X, et al. Research progress of graphene reinforced composites [J]. Chem. Propellants Polym. Mater., 2020, 18(6): 11
洪机剑, 何小玲, 傅楚娴 等. 石墨烯增强复合材料研究进展 [J]. 化学推进剂与高分子材料, 2020, 18(6): 11
9 Luo J M, Wu X H, Zang J P, et al. Preparation and mechanical properties of GNPs-Cu/Ti6Al4V composites[J]. Chin. J. of Nonferrous Met., 2017, 27(9): 1803
罗军明, 吴小红, 张剑平 等. 石墨烯-Cu/Ti6Al4V复合材料的制备及力学性能 [J]. 中国有色金属学报, 2017, 27(9): 1803
10 Hu Z R, Tong G Q, Zhang C, et al. Corrosion behavior of laser sintered graphene reinforced titanium martix nanocomposite [J]. China Surf. Eng., 2015, 28(06): 127
胡增荣, 童国权, 张 超 等. 激光烧结石墨烯钛纳米复合材料及其耐腐蚀性能 [J]. 中国表面工程, 2015, 28(6): 127
11 Mu X N, Cai H N, Zhang H M, et al. Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite [J]. Mater. Des., 2017, 140: 431
doi: 10.1016/j.matdes.2017.12.016
12 Yan Q, ChenN B, Li J S. Super-high-strength graphene/titanium composites fabricated by selective laser melting [J]. Carbon, 2020, 174(12): 451
doi: 10.1016/j.carbon.2020.12.047
13 Lin K, Fang Y, Gu D, et al. Selective laser melting of graphene reinforced titanium matrix composites: Powder preparation and its formability [J]. Adv. Powder Technol., 2021, 32(5): 426
14 Chen H, Mi G B, Li P J, et al. Effects of graphene oxide on microstructure and mechanical properties of 600℃ high temperature titanium alloy [J]. J. Mater. Eng., 2019, 47(9): 8
陈 航, 弭光宝, 李培杰 等. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响 [J]. 材料工程, 2019, 47(9): 8
15 Jiang H, Ler J X, XIE C Y. Electrochemical corrosion behaviors of ultrafine-grained commercially pure titanium processed by rolling [J]. J. Plast. Eng., 2016, 23(6): 187
江鸿, 雷君相, 谢超英. 轧制变形超细晶纯钛的电化学腐蚀行为 [J]. 塑性工程学报, 2016, 23(6): 187
16 Sun L F, Yang Y Q, Yang Z. Study on surface roughness of selective laser meiting Ti6Al4V based on power characteristics [J]. Chin. J. Lasers, 2016, 43(7): 104
孙健峰, 杨永强, 杨洲. 基于粉末特性的选区激光熔化Ti6Al4V表面粗糙度研究 [J]. 中国激光, 2016, 43(7): 104
17 Yang Y C, Wu B, Liu Y Q. Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices [J]. Acta Phys. Sin., 2017, 66(21): 177
杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件 [J]. 物理学报, 2017, 66(21): 177
18 Wu Y L, Wang Y, Qiao L Y, et al. Study on structures and properties of hexagonal porous Ti6Al4V ally via selective laser melting [J]. J. Funct. Mater., 2018, 49(6): 6080
吴艳琳, 王勇, 乔丽英, 姜定成. 选区激光熔化成型正六方柱体多孔TC4合金结构及力学性能研究 [J]. 功能材料, 2018, 49(6): 6080
doi: 10.3969/j.issn.1001-9731.2018.06.012
19 Chou X M. Study on powder metallurgy titanium alloy and porous titanium [D]. Changsha: Central South University, 2007
丑晓明. 粉末冶金钛合金及多孔钛研究 [D]; 长沙: 中南大学, 2007
20 Li H L, Jia D C, Yang Z H, et al. Research progress on selective laser melting 3D printing of titanium alloys and titanium matrix composites [J]. Mater. Sci. Technol., 2019, 27(2): 1
doi: 10.1179/026708311X12911114483692
李海亮, 贾德昌, 杨治华 等. 选区激光熔化3D打印钛合金及其复合材料研究进展 [J]. 材料科学与工艺, 2019, 27(2): 1
21 Sun F, Wang K X, Yang H, et al. Investigation of graphene reinforced titanium matrix composites preparation process and properties [J]. Titanium Ind. Prog., 2019, 36(1): 8
孙 峰, 王凯旋, 杨辉 等. 石墨烯增强钛基复合材料制备工艺与性能研究 [J]. 钛工业进展, 2019, 36(1): 8
22 Hu Z R, Tong G Q, Zhang C, et al. Corrosion behavior of laser sintered graphene reinforced titanium matrix nanocomposites [J]. China Surf. Eng., 2015, 28(6): 127
23 Li H, Huang B, Fan S, et al. Microstructure and Tensile Properties of Ti-6Al-4V Alloys Fabricated by Selective Laser Melting [J]. Rare Met. Mater. Eng., 2013, 42(2): 209
24 Jeon C H, Jeong Y H, Seo J J, et al. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing [J]. Int. J. Precis. Eng. Man., 2014, 15(6): 1235
doi: 10.1007/s12541-014-0462-2
25 Singla A K, Baner J M, Sharma A, et al. Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments [J]. J. Manuf. Process, 2021, 64: 161
doi: 10.1016/j.jmapro.2021.01.009
26 Bayode B L, Tefeo M L, Tayler T, et al. Structural, mechanical and electrochemical properties of spark plasma sintered Ti-30Ta alloys [J]. Mater. Sci. Eng., B, 2022, 283: 115826
27 Zhang F, Liu S, Zhao P, et al. Titanium/nanodiamond nanocomposites: Effect of nanodiamond on microstructure and mechanical properties of titanium [J]. Mater. Des., 2017, 131: 144
doi: 10.1016/j.matdes.2017.06.015
28 Bai H Q, Shang Z, Cai X L, et al. Research progress of in-situ titanium carbide particulate reinforced titanium composite material [J]. Hot Working Technol., 2019, 48(4): 1
白海强, 商 昭, 蔡小龙 等. 原位制备碳化钛颗粒增强钛基复合材料研究进展 [J]. 热加工工艺, 2019, 48(4): 1
29 Wang X J, Wang X C, Xi B Y I, et al. Impact of powder characteristics on formation properties of selective laser melted Al-Si alloy [J]. Shandong Sci., 2016, 29(2):30
doi: 10.3976/j.issn.1002-4026.2016.02.007
王小军, 王修春, 伊希斌 等. 粉体特征对选区激光熔化Al-Si合金成型性能的影响 [J]. 山东科学, 2016, 29(2):30
30 Zong X W, Zhang J, Lu B H, et al. Numerical analysis and microstructure and properties of Hastelloy X and Ti6Al4V alloy formed by selective laser melting [J]. Appl. Laser, 2021, 41(4): 745
宗学文, 张 健, 卢秉恒 等. 选区激光熔化制备Hastelloy X和Ti6Al4V合金数值分析及组织性能 [J]. 应用激光, 2021, 41(4): 745
31 Gu D, Meng G, Li C, et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement [J]. Scr. Mater., 2012, 67(2): 185
doi: 10.1016/j.scriptamat.2012.04.013
32 Ph A, Zz A, Wd B, et al. Deformation strengthening mechanism of in situ TiC/TC4 alloy nanocomposites produced by selective laser melting [J]. Composites, Part B, 2021, 225: 109305
33 Chen S Y, Huang J C, Pan C T, et al. Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting [J]. J. Alloys Compd., 2017, 713: 248
doi: 10.1016/j.jallcom.2017.04.190
34 Ji X M, Xiang S, Shen T, et al. Relation Between Solution Aging Parameters and Microstructure and Properties of TA12 Ti Alloy [J]. Hot Working Technol., 2015, 44(20): 172
冀宣名, 向 嵩, 沈 涛 等. TA12钛合金固溶时效参数与组织和性能的关系 [J]. 热加工工艺, 2015, 44(20): 172
35 Wang W, Zhou H X, Wang Q J. Tribological properties of graphene reinforced titanium matrix composites [J]. Ordnance Mater. Sci. Eng., 2019, 42(1): 26
王 伟, 周海雄, 王庆娟 等. 石墨烯增强钛基复合材料的摩擦学性能研究 [J]. 兵器材料科学与工程, 2019, 42(1): 26
36 Su S L, Rao Q H, He Y H. Compression mechanical properties of FeAl intermetallic compound porous material [J]. Rare Met. Mater. Eng., 2018, 47(08): 2453
37 Maskery I, Aboulkhair N T, Aremu A O, et al. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting [J]. Mater. Sci. Eng. A Struct. Mater., 2016, 670: 264
doi: 10.1016/j.msea.2016.06.013
38 Jia P, Xu X T, Huang F, et al. Effect of pore structure on mechanical properties and fracture mechanism of porous materials [J].J. Northeast.Univ., Nat. Sci., 2021, 42(12): 1768
贾 蓬, 徐雪桐, 黄菲 等. 多孔材料的孔结构对其力学性能及破裂机制的影响 [J]. 东北大学学报(自然科学版), 2021, 42(12): 1768
39 Qiao J C, Xi Z P, Tang H P, et al. Review on compressive behavior of porous metals [J]. Rare Met. Mater. Eng., 2010, 39(3): 561
乔吉超, 奚正平, 汤慧萍 等. 金属多孔材料压缩行为的评述 [J]. 稀有金属材料与工程, 2010, 39(3): 561
40 GAO R N, Xiong Y Z, Zhang H, et al. Mechanical properties and biocompatibilities of radially graded porous titanium/tantalum fabricated by selective laser melting [J]. Rare Met. Mater. Eng., 2021, 50(1): 249
高芮宁, 熊胤泽, 张 航 等. SLM制备径向梯度多孔钛/钽的力学性能及生物相容性 [J]. 稀有金属材料与工程, 2021, 50(1): 249
41 Wu L, Fu T T, Yu X H, et al. Anodic oxidation characteristic of commercial pure titanium and its corrosion resistance [J]. Hot Working Technol., 2017, 46(4): 161
伍 俐, 付天琳, 于晓华 等. 工业纯钛的阳极氧化特性及其抗腐蚀性能研究 [J]. 热加工工艺, 2017, 46(4): 161
42 Li Y S. Study of antiseptic properties and biocompatibility of metallic biological [J]. Chin. J. Pharm. Anal., 2006, 26(7): 1028
李云胜. 金属生物材料的抗腐蚀性能和生物相容性研究 [J]. 药物分析杂志, 2006, 26(7): 1028
43 Zou T C, Ou Y, Zhu H. Effect of heat treatment on microhardness of AlSi7Mg alloy fabricated by selective laser melting [J]. Hot Working Technol., 2019, 48(24): 123
邹田春, 欧 尧, 祝 贺. 热处理对激光选区熔化AlSi7Mg合金显微硬度的影响 [J]. 热加工工艺, 2019, 48(24): 123
[1] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] LIU Tao, YIN Zhiqiang, LEI Jingfa, GE Yongsheng, SUN Hong. Plastic Deformation Behavior of Selective Laser Melting 316L Stainless Steel under High Strain Rate Compression[J]. 材料研究学报, 2023, 37(5): 391-400.
[4] JIANG Menglei, DAI Binbin, CHEN Liang, LIU Hui, MIN Shiling, YANG Fan, HOU Juan. Effect of Building Dimensions by Selective Laser Melting on Pitting Properties of 304L Stainless Steel[J]. 材料研究学报, 2023, 37(5): 353-361.
[5] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[6] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
[7] HUANG Huan, ZHANG Xuntao, YANG Shangke, XIAO Liuxin, ZHANG Zhaoxin, YAN Lei, LIN Hailan, BIAN Jun, CHEN Daiqiang. Properties of Nylon PA6-based Nanocomposites Co-modified with Graphene Oxide/sodium Benzoate Complex Nucleating Agent[J]. 材料研究学报, 2022, 36(6): 416-424.
[8] CAI Yusheng, HAN Hongzhi, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting[J]. 材料研究学报, 2022, 36(6): 435-442.
[9] LIU Jialiang, XU Dongwei, CHEN Ping. Preparation and Microwave Absorption Properties of Magnetic Porous rGO@Co/CoO Composites[J]. 材料研究学报, 2022, 36(5): 332-342.
[10] DIAO Wei, DU Lei, WANG Yanbo, ZHOU Haitao, SUN Jingli. Anisotropy of Ti6Al4V Alloy Fabricated by Selective Laser Melting[J]. 材料研究学报, 2022, 36(3): 231-240.
[11] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[12] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[13] ZENG Qiang, WANG Rongchao, LIU Qi, PENG Huanan, CHEN Ping. Properties of Epoxy Resin Based Composite Incorporated with Magnetically Functionalized Reduction Graphene Oxide[J]. 材料研究学报, 2022, 36(12): 881-886.
[14] ZHANG Baochao, TONG Yu, LI Wanhong. Preparation and Properties of Graphene Paper Garland and its Cement-based Composite[J]. 材料研究学报, 2021, 35(9): 689-693.
[15] QIN Feng, SHI Qi, LIU Xin, ZHOU Ge, CHEN Lijia. Effect of Heat Treatment on Microstructure and Mechanical Properties of Selective Laser Melted 17-4PH Stainless Steel[J]. 材料研究学报, 2021, 35(8): 606-614.
No Suggested Reading articles found!