Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (7): 552-560    DOI: 10.11901/1005.3093.2021.431
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites
LIU Yanyun(), LIU Yutao, LI Wanxi
Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, China
Cite this article: 

LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites. Chinese Journal of Materials Research, 2022, 36(7): 552-560.

Download:  HTML  PDF(6970KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Graphene/polyaniline/manganese dioxide ternary composites (rGO/PANI/MnO2) were prepared by hydrothermal method, followed by freeze-dried in vacuum treatment in this paper. The composites prepared by this simple and efficient method had self-supporting properties. The composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The results show that the prepared ternary composites had an interconnected network structure. During the reaction MnO2 and polyaniline formed an irregular block structure and co-deposited on the network layer formed by graphene self-assembly. The composite electrode showed good capacitive properties, with a specific capacitance of 388 F·g-1 (0.5 A·g-1), which was better than that of graphene (rGO, 234 F·g-1) and polyaniline (PANI, 176 F·g-1). In addition, an asymmetric supercapacitor was assembled using the composite as the positive electrode and rGO as the negative electrode. The asymmetric capacitor could be reversibly cycled in the range of 0~1.6 V. When the power density was 17.48 W·kg-1, the maximum energy density could reach 13.5 Wh·kg-1.

Key words:  composite      graphene      hydrothermal method      electrochemical properties     
Received:  13 August 2021     
ZTFLH:  TB383  
Fund: Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2020L0576);Shanxi “1331 Project” Key Innovative Research Team(PY201817);Jinzhong University “1331 Project” Key Innovative Research Team(jzxycxtd2019005);Collaborative Innovation Center for the Modified Application of Lightweight Materials(jzxyxtcxzx202103)
About author:  LIU Yanyun, Tel: 15698402116, E-mail: 312217642@qq.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.431     OR     https://www.cjmr.org/EN/Y2022/V36/I7/552

Fig.1  XRD patterns of rGO/PANI/MnO2, GO and rGO
Fig.2  XPS spectra of rGO/PANI/MnO2-3 (a) survey, (b) Mn2p, (c) N1s and (d) C1s
Fig.3  SEM images of the rGO/PANI/MnO2-3
Fig.4  CV curves of rGO、PANI and rGO/PANI/MnO2-3 at 2 mV/s (a), CP curves of rGO、PANI and rGO/PANI/MnO2-3 at 0.2 A·g-1 (b), EIS curve of rGO、PANI and rGO/PANI/MnO2-3 (c), and inset shows the high-frequency region of the plot
Fig.5  CV curves of the three composites at 2 mV/s (a), CV curves of rGO/PANI/MnO2-3 at different scan rates (b), the capacitive contribution at a scan rate of 5 mV/s (c), the ratio of capacitive effects and diffusion controlled contributions at different scan rates (d)
Fig.6  CP curves of the three composites at 0.2 A·g-1 (a), CP curves of rGO/PANI/MnO2-3 under different current densities (b), the relationships between Ce and current densities of rGO/PANI/MnO2-3 (c) and EIS curve of the three composites (d)
Fig.7  CV curves of asymmetric supercapacitor at different potential windows at 100 mV/s (a), CV curves of asymmetric supercapacitor at different scan rates (b), CP curves of asymmetric supercapacitor at different potential windows at 1 A·g-1 (c), CP curves of asymmetric supercapacitor under different current densities (d), Ragone plots of the energy density versus power density for asymmetric supercapacitors (e) and Cycling life of asymmetric supercapacitors at 0.5 A·g-1 (f)
1 Li H X, Lang J W, Lei S L, et al. A high-performance sodium-ion hybrid capacitor constructed by metalorganic framework-derived anode and cathode materials [J]. Adv. Funct. Mater., 2018, 28: 1800757
doi: 10.1002/adfm.201800757
2 Wang B, Zhao J, Zhang D H, et al. Three-dimensional porous carbon framework coated with one-dimensional nanostructured polyaniline nanowires composite for high performance supercapacitors [J]. Appl. Surf. Sci., 2019, 474: 147
doi: 10.1016/j.apsusc.2018.04.057
3 Lian C, Janssen M, Liu H R, et al. Blessing and curse: how a supercapacitor's large capacitance causes its slow charging [J]. Phys. Rev. Lett., 2020, 124: 076001
4 Chao D, Liang P, Chen Z, et al. Pseudocapacitive Na-ion storage boosts high-rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays [J]. ACS Nano, 2016, 10: 10211
doi: 10.1021/acsnano.6b05566
5 Li A J, Chuan X Y, Huang D B, et al. KOH activation of diatomite-templated carbon and its electrochemical property in supercapacitor [J]. Chin. J. Mater. Res., 2017, 31: 321
李爱军, 传秀云, 黄杜斌 等. KOH活化硅藻土模板炭及其电化学性能研究 [J]. 材料研究学报, 2017, 31: 321
doi: 10.11901/1005.3093.2016.366
6 Geim A K. Graphene: Status and prospects [J]. Science, 2009, 324: 1530
doi: 10.1126/science.1158877 pmid: 19541989
7 El-Kady M F, Strong V, Dubin S, et al. Laser Scribing of high-performance and flexible graphene-based electrochemical capacitors [J]. Science, 2012, 335: 1326
doi: 10.1126/science.1216744 pmid: 22422977
8 Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science, 2011, 332: 1537
doi: 10.1126/science.1200770
9 Shaikh S F, Shaikh F F M, Shaikh A V, et al. Electrodeposited more-hydrophilic nano-nest polyaniline electrodes for supercapacitor application [J]. J. Phys. Chem. Solid., 2021, 149: 109774
doi: 10.1016/j.jpcs.2020.109774
10 Zhao J, Zhu B, Yang G, et al. Vacuum annealed MnO2 ultra-thin nanosheets with oxygen defects for high performance supercapacitors [J]. J. Phys. Chem. Solid., 2021, 150: 109856
doi: 10.1016/j.jpcs.2020.109856
11 Kakaei K, Khodadoost S, Gholipour M, et al. Core-shell polyaniline functionalized carbon quantum dots for supercapacitor [J]. J. Phys. Chem. Solids, 2021, 148: 109753
doi: 10.1016/j.jpcs.2020.109753
12 Zhu S Z, Tang G X, Wang J, et al. Preparation and capacitance properties of polyaniline/carbon microcoil composites [J]. Chin. J. Mater. Res., 2016, 30: 186
朱士泽, 唐国霞, 王 健 等. 聚苯胺/碳螺旋纤维复合材料的合成及其电容特性研究 [J], 材料研究学报, 2016, 30: 186
doi: 10.11901/1005.3093.2015.361
13 Pal R, Goyal S L, Rawal I, High-performance solid-state supercapacitors based on intrinsically conducting polyaniline/MWCNTs composite electrodes [J]. J. Polym. Res., 2020, 27: 179
doi: 10.1007/s10965-020-02144-y
14 Ge M, Hao H, Lv Q, et al. Hierarchical nanocomposite that coupled nitrogen-doped graphene with aligned PANI cores arrays for high-performance supercapacitor [J]. Electrochim. Acta, 2020, 330: 135236
doi: 10.1016/j.electacta.2019.135236
15 Pal R, Goyal S L, Rawal I, Transition of charge transport phenomena from 3D to 1D hopping at low temperatures in polyaniline/graphene composites[J]. J. Appl. Phys., 2020, 128: 175108
doi: 10.1063/5.0020745
16 Viswanathan A, Shetty A N, Effect of dopants on the energy storage performance of reduced graphene oxide/polyaniline nanocomposite[J]. Electrochim. Acta, 2019, 327: 135026
doi: 10.1016/j.electacta.2019.135026
17 Li J, Xiao D, Ren Y, et al. Bridging of adjacent graphene/polyaniline layers with polyaniline nanofibers for supercapacitor electrode materials [J]. Electrochim. Acta, 2019, 300: 193
doi: 10.1016/j.electacta.2019.01.089
18 Ahirrao D J, Mohanapriya K, Wilson H M, et al. Solar reduced porous graphene incorporated within polyaniline network for high-performance supercapacitor electrode [J]. Appl. Surf. Sci., 2020, 510: 145485
doi: 10.1016/j.apsusc.2020.145485
19 Yu H, Ge X, Bulin C, et al. Facile fabrication and energy storage analysis of graphene/PANI paper electrodes for supercapacitor application [J]. Electrochim. Acta, 2017, 253: 239
doi: 10.1016/j.electacta.2017.09.071
20 Li J, Xie H, Li Y, et al. Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors [J]. J. Power Sources, 2011, 196: 10775
doi: 10.1016/j.jpowsour.2011.08.105
21 Xu Y, Schwab M G, Strudwick A J, et al. Screen printable thin film supercapacitor device utilizing graphene/polyaniline inks [J]. Adv. Energy Mater., 2013, 3: 1035
doi: 10.1002/aenm.201300184
22 Song N, Wang W, Wu Y, et al. Fabrication of highly ordered polyaniline nanocore on pristine graphene for high-performance supercapacitor electrodes [J]. J. Phys. Chem. Solid., 2018, 115: 148
doi: 10.1016/j.jpcs.2017.12.022
23 Liu L, Lang J W, Zhang P, et al. Facile synthesis of Fe2O3 nano-dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte [J]. ACS Appl. Mater. Interfaces, 2016, 8: 9335
doi: 10.1021/acsami.6b00225
24 Chauhan N P S, Mozafari M, Chundawat N S, et al. High-performance supercapacitors based on polyaniline-graphene nanocomposites: some approaches, challenges and opportunities [J]. J. Industrial Eng. Chem., 2016, 36: 13
doi: 10.1016/j.jiec.2016.03.003
25 Zhang J M, Zhang Y, Yuan J, et al. High rate capability electrode from a ternary composite of nanodiamonds/reduced graphene oxide@PANI for electrochemical capacitors [J]. Chem. Phys., 2019, 526: 110461
doi: 10.1016/j.chemphys.2019.110461
26 Liu Y Y, Ma L, Chen Y Q, A simple one-step approach for preparing flexible rGO-MnO 2 electrode material [J]. J. Mater. Sci.: Mater. Electron., 2018, 29: 17438
doi: 10.1007/s10854-018-9843-0
27 Liu Y Y, Ma L, Zhang D, et al. A simple route to prepare a Cu2O-CuO-GN nanohybrid for high-performance electrode materials [J]. RSC Advances, 2017, 7: 12027
doi: 10.1039/C6RA26535A
28 Wang G X, Tang Q Q, Bao H, et al. Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance [J]. J. Power Sources, 2013, 241: 231
doi: 10.1016/j.jpowsour.2013.04.122
29 Peng H R, Lv S S, Li G C. Preparation and characterization of graphene/SnO2/polyaniline nano-composites [J]. J Qingdao Tech. Univ. 2011, 32: 6
彭红瑞, 吕莎莎, 李桂村. 石墨烯/SnO2/聚苯胺纳米复合材料的制备与表征 [J]. 青岛理工大学学报, 2011, 32: 6
30 Liu Z, Chen W L, Fan Xin, Preparation of 3D MnO2/polyaniline/graphene hybrid material via interfacial polymerization as high-performance supercapacitor electrode [J]. Chin. J. Chem., 2016, 34: 839
doi: 10.1002/cjoc.201600217
31 Fu S N, Ma L, Gan M Y, 3D reduced graphene oxide/MnO2/polyaniline composite for high-performance supercapacitor [J]. J Mater Sci: Mater Electron, 2017, 28: 3621
doi: 10.1007/s10854-016-5964-5
32 Chigane M, Ishikawa M, Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism [J]. J. Electrochem. Soc., 2000, 147: 2246
doi: 10.1149/1.1393515
33 Jayaramulu K., Horn M., Schneemann A., et al. Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors [J]. Adv. Mater., 2021, 33: 2004560
doi: 10.1002/adma.202004560
34 Brezesinski T., Wang J., Tolbert S. H., et al. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors [J]. Nat. Mater., 2010, 9: 146
doi: 10.1038/nmat2612 pmid: 20062048
35 Shen K. X., Chen H. D., Qin H. Q., et al. Construct pseudo-capacitance of a fexible 3D-entangled carbon nanofber flm as freestanding anode for dual-ion full batteries [J]. J Mater Sci: Mater Electron, 2020, 31: 10962
doi: 10.1007/s10854-020-03587-1
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!