|
|
Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites |
LIU Yanyun( ), LIU Yutao, LI Wanxi |
Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, China |
|
Cite this article:
LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites. Chinese Journal of Materials Research, 2022, 36(7): 552-560.
|
Abstract Graphene/polyaniline/manganese dioxide ternary composites (rGO/PANI/MnO2) were prepared by hydrothermal method, followed by freeze-dried in vacuum treatment in this paper. The composites prepared by this simple and efficient method had self-supporting properties. The composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The results show that the prepared ternary composites had an interconnected network structure. During the reaction MnO2 and polyaniline formed an irregular block structure and co-deposited on the network layer formed by graphene self-assembly. The composite electrode showed good capacitive properties, with a specific capacitance of 388 F·g-1 (0.5 A·g-1), which was better than that of graphene (rGO, 234 F·g-1) and polyaniline (PANI, 176 F·g-1). In addition, an asymmetric supercapacitor was assembled using the composite as the positive electrode and rGO as the negative electrode. The asymmetric capacitor could be reversibly cycled in the range of 0~1.6 V. When the power density was 17.48 W·kg-1, the maximum energy density could reach 13.5 Wh·kg-1.
|
Received: 13 August 2021
|
|
Fund: Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2020L0576);Shanxi “1331 Project” Key Innovative Research Team(PY201817);Jinzhong University “1331 Project” Key Innovative Research Team(jzxycxtd2019005);Collaborative Innovation Center for the Modified Application of Lightweight Materials(jzxyxtcxzx202103) |
About author: LIU Yanyun, Tel: 15698402116, E-mail: 312217642@qq.com
|
1 |
Li H X, Lang J W, Lei S L, et al. A high-performance sodium-ion hybrid capacitor constructed by metalorganic framework-derived anode and cathode materials [J]. Adv. Funct. Mater., 2018, 28: 1800757
doi: 10.1002/adfm.201800757
|
2 |
Wang B, Zhao J, Zhang D H, et al. Three-dimensional porous carbon framework coated with one-dimensional nanostructured polyaniline nanowires composite for high performance supercapacitors [J]. Appl. Surf. Sci., 2019, 474: 147
doi: 10.1016/j.apsusc.2018.04.057
|
3 |
Lian C, Janssen M, Liu H R, et al. Blessing and curse: how a supercapacitor's large capacitance causes its slow charging [J]. Phys. Rev. Lett., 2020, 124: 076001
|
4 |
Chao D, Liang P, Chen Z, et al. Pseudocapacitive Na-ion storage boosts high-rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays [J]. ACS Nano, 2016, 10: 10211
doi: 10.1021/acsnano.6b05566
|
5 |
Li A J, Chuan X Y, Huang D B, et al. KOH activation of diatomite-templated carbon and its electrochemical property in supercapacitor [J]. Chin. J. Mater. Res., 2017, 31: 321
|
|
李爱军, 传秀云, 黄杜斌 等. KOH活化硅藻土模板炭及其电化学性能研究 [J]. 材料研究学报, 2017, 31: 321
doi: 10.11901/1005.3093.2016.366
|
6 |
Geim A K. Graphene: Status and prospects [J]. Science, 2009, 324: 1530
doi: 10.1126/science.1158877
pmid: 19541989
|
7 |
El-Kady M F, Strong V, Dubin S, et al. Laser Scribing of high-performance and flexible graphene-based electrochemical capacitors [J]. Science, 2012, 335: 1326
doi: 10.1126/science.1216744
pmid: 22422977
|
8 |
Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science, 2011, 332: 1537
doi: 10.1126/science.1200770
|
9 |
Shaikh S F, Shaikh F F M, Shaikh A V, et al. Electrodeposited more-hydrophilic nano-nest polyaniline electrodes for supercapacitor application [J]. J. Phys. Chem. Solid., 2021, 149: 109774
doi: 10.1016/j.jpcs.2020.109774
|
10 |
Zhao J, Zhu B, Yang G, et al. Vacuum annealed MnO2 ultra-thin nanosheets with oxygen defects for high performance supercapacitors [J]. J. Phys. Chem. Solid., 2021, 150: 109856
doi: 10.1016/j.jpcs.2020.109856
|
11 |
Kakaei K, Khodadoost S, Gholipour M, et al. Core-shell polyaniline functionalized carbon quantum dots for supercapacitor [J]. J. Phys. Chem. Solids, 2021, 148: 109753
doi: 10.1016/j.jpcs.2020.109753
|
12 |
Zhu S Z, Tang G X, Wang J, et al. Preparation and capacitance properties of polyaniline/carbon microcoil composites [J]. Chin. J. Mater. Res., 2016, 30: 186
|
|
朱士泽, 唐国霞, 王 健 等. 聚苯胺/碳螺旋纤维复合材料的合成及其电容特性研究 [J], 材料研究学报, 2016, 30: 186
doi: 10.11901/1005.3093.2015.361
|
13 |
Pal R, Goyal S L, Rawal I, High-performance solid-state supercapacitors based on intrinsically conducting polyaniline/MWCNTs composite electrodes [J]. J. Polym. Res., 2020, 27: 179
doi: 10.1007/s10965-020-02144-y
|
14 |
Ge M, Hao H, Lv Q, et al. Hierarchical nanocomposite that coupled nitrogen-doped graphene with aligned PANI cores arrays for high-performance supercapacitor [J]. Electrochim. Acta, 2020, 330: 135236
doi: 10.1016/j.electacta.2019.135236
|
15 |
Pal R, Goyal S L, Rawal I, Transition of charge transport phenomena from 3D to 1D hopping at low temperatures in polyaniline/graphene composites[J]. J. Appl. Phys., 2020, 128: 175108
doi: 10.1063/5.0020745
|
16 |
Viswanathan A, Shetty A N, Effect of dopants on the energy storage performance of reduced graphene oxide/polyaniline nanocomposite[J]. Electrochim. Acta, 2019, 327: 135026
doi: 10.1016/j.electacta.2019.135026
|
17 |
Li J, Xiao D, Ren Y, et al. Bridging of adjacent graphene/polyaniline layers with polyaniline nanofibers for supercapacitor electrode materials [J]. Electrochim. Acta, 2019, 300: 193
doi: 10.1016/j.electacta.2019.01.089
|
18 |
Ahirrao D J, Mohanapriya K, Wilson H M, et al. Solar reduced porous graphene incorporated within polyaniline network for high-performance supercapacitor electrode [J]. Appl. Surf. Sci., 2020, 510: 145485
doi: 10.1016/j.apsusc.2020.145485
|
19 |
Yu H, Ge X, Bulin C, et al. Facile fabrication and energy storage analysis of graphene/PANI paper electrodes for supercapacitor application [J]. Electrochim. Acta, 2017, 253: 239
doi: 10.1016/j.electacta.2017.09.071
|
20 |
Li J, Xie H, Li Y, et al. Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors [J]. J. Power Sources, 2011, 196: 10775
doi: 10.1016/j.jpowsour.2011.08.105
|
21 |
Xu Y, Schwab M G, Strudwick A J, et al. Screen printable thin film supercapacitor device utilizing graphene/polyaniline inks [J]. Adv. Energy Mater., 2013, 3: 1035
doi: 10.1002/aenm.201300184
|
22 |
Song N, Wang W, Wu Y, et al. Fabrication of highly ordered polyaniline nanocore on pristine graphene for high-performance supercapacitor electrodes [J]. J. Phys. Chem. Solid., 2018, 115: 148
doi: 10.1016/j.jpcs.2017.12.022
|
23 |
Liu L, Lang J W, Zhang P, et al. Facile synthesis of Fe2O3 nano-dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte [J]. ACS Appl. Mater. Interfaces, 2016, 8: 9335
doi: 10.1021/acsami.6b00225
|
24 |
Chauhan N P S, Mozafari M, Chundawat N S, et al. High-performance supercapacitors based on polyaniline-graphene nanocomposites: some approaches, challenges and opportunities [J]. J. Industrial Eng. Chem., 2016, 36: 13
doi: 10.1016/j.jiec.2016.03.003
|
25 |
Zhang J M, Zhang Y, Yuan J, et al. High rate capability electrode from a ternary composite of nanodiamonds/reduced graphene oxide@PANI for electrochemical capacitors [J]. Chem. Phys., 2019, 526: 110461
doi: 10.1016/j.chemphys.2019.110461
|
26 |
Liu Y Y, Ma L, Chen Y Q, A simple one-step approach for preparing flexible rGO-MnO 2 electrode material [J]. J. Mater. Sci.: Mater. Electron., 2018, 29: 17438
doi: 10.1007/s10854-018-9843-0
|
27 |
Liu Y Y, Ma L, Zhang D, et al. A simple route to prepare a Cu2O-CuO-GN nanohybrid for high-performance electrode materials [J]. RSC Advances, 2017, 7: 12027
doi: 10.1039/C6RA26535A
|
28 |
Wang G X, Tang Q Q, Bao H, et al. Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance [J]. J. Power Sources, 2013, 241: 231
doi: 10.1016/j.jpowsour.2013.04.122
|
29 |
Peng H R, Lv S S, Li G C. Preparation and characterization of graphene/SnO2/polyaniline nano-composites [J]. J Qingdao Tech. Univ. 2011, 32: 6
|
|
彭红瑞, 吕莎莎, 李桂村. 石墨烯/SnO2/聚苯胺纳米复合材料的制备与表征 [J]. 青岛理工大学学报, 2011, 32: 6
|
30 |
Liu Z, Chen W L, Fan Xin, Preparation of 3D MnO2/polyaniline/graphene hybrid material via interfacial polymerization as high-performance supercapacitor electrode [J]. Chin. J. Chem., 2016, 34: 839
doi: 10.1002/cjoc.201600217
|
31 |
Fu S N, Ma L, Gan M Y, 3D reduced graphene oxide/MnO2/polyaniline composite for high-performance supercapacitor [J]. J Mater Sci: Mater Electron, 2017, 28: 3621
doi: 10.1007/s10854-016-5964-5
|
32 |
Chigane M, Ishikawa M, Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism [J]. J. Electrochem. Soc., 2000, 147: 2246
doi: 10.1149/1.1393515
|
33 |
Jayaramulu K., Horn M., Schneemann A., et al. Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors [J]. Adv. Mater., 2021, 33: 2004560
doi: 10.1002/adma.202004560
|
34 |
Brezesinski T., Wang J., Tolbert S. H., et al. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors [J]. Nat. Mater., 2010, 9: 146
doi: 10.1038/nmat2612
pmid: 20062048
|
35 |
Shen K. X., Chen H. D., Qin H. Q., et al. Construct pseudo-capacitance of a fexible 3D-entangled carbon nanofber flm as freestanding anode for dual-ion full batteries [J]. J Mater Sci: Mater Electron, 2020, 31: 10962
doi: 10.1007/s10854-020-03587-1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|