Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (5): 332-342    DOI: 10.11901/1005.3093.2021.391
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Microwave Absorption Properties of Magnetic Porous rGO@Co/CoO Composites
LIU Jialiang1, XU Dongwei1, CHEN Ping1,2()
1.State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, China
Cite this article: 

LIU Jialiang, XU Dongwei, CHEN Ping. Preparation and Microwave Absorption Properties of Magnetic Porous rGO@Co/CoO Composites. Chinese Journal of Materials Research, 2022, 36(5): 332-342.

Download:  HTML  PDF(9534KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanocomposites of reduced graphene oxide coated cobalt or cobalt oxide (rGO@Co/CoO) were synthesized by solvothermal and high-temperature calcination method with solutions of AA grade Co and graphene oxide as raw materials. The prepared products are characterized by means of XRD, Raman spectroscopy, XPS, SEM and TEM. Results show that three type of composites could be fabricated by calcination at 350, 500 and 650°C respectively, namely rGO@CoO of face-centered cubic (fcc) phase, rGO@Co of fcc phase, and rGO@Co of fcc and hcp two-phases. Among others, the fcc rGO@Co (S500) exhibits excellent electromagnetic wave absorption properties (the relevant property was measured on a hollow ring made of the paraffin filled with the composite): The hollow ring with a low mass filling ratio of 10% (mass fraction) fcc rGO@Co (S500) nanocomposite presents the minimum reflection loss (RLmin) and maximum effective absorption bandwidth (EAB), corresponding to the RLmin and EAB are -74.5 dB and 6.1 GHz, respectively for the hollow ring with a wall of 2.5 mm in thickness. We believed that the present approach may be an economic and green route for the controllable synthesis of porous functionalized graphene materials as microwave absorbers.

Key words:  composite      three-dimensional graphene      magnetic nanoparticles      electromagnetic wave absorption performance     
Received:  02 July 2021     
ZTFLH:  TB332  
Fund: Liaoning Revitalization Talents Program(XLYC1802085);National Natural Science Foundation of China(51873109);Dalian Science and Technology Innovation Fund Project(2019J11CY007);Fundamental Research Funds for the Central Universities(DUT20TD207);Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education(KF2004)
About author:  CHEN Ping, Tel: (0411)84986100, E-mail: Pchen@dlut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.391     OR     https://www.cjmr.org/EN/Y2022/V36/I5/332

Fig.1  Schematic illustration for the formation of the rGO@Co/CoO nanocomposites
Fig.2  XRD patterns of porous magnetic rGO@Co/CoO nanocomposit
Fig.3  XPS full spectrum of rGO@Co (a), Co 2p spectrum of rGO@Co (b), C 1s spectrum of rGO@Co (c) and C 1s spectrum of GO (d)
Fig.4  Raman spectra with corresponding ID/IG ratios of as-prepared S350, S500 and S650
Fig.5  SEM morphologies of S500 at different magnifications (a, b) and TEM morphologies of S500 at different magnifications (c, d)
Fig.6  Representation of RL values of S350 (a, b), S500 (c, d) and S650 (e, f)
Samples in matrices

Filler loading

/%, mass fraction

Thickness

/mm

RLmin

/dB

EAB

/GHz

Ref.
rGO@CoO/Co102.5-74.56.1This wrok
MGF@Fe3O4232.4-74.46.0[5]
Air@rGO€Fe3O4332.8-527.2[7]
FeCo/Graphene501.5-405[8]
CoO nanosheet-coated Co701.6-30.44.6[10]
Co/C Composite-4.7-58.52.7[12]
RGO-PANI-2-41.44.2[13]
Graphene/ZnO hollow spheres502.2-45.12.3[14]
N-GN/Fe3O4503.4-65.34[17]
α-Fe2O3/rGO504-46.84.9[18]
Hollow Carbon@Fe@Fe3O4501.5-405.2[19]
RGO-Fe3O4503.9-44.64.3[20]
Hollow urchin like α-MnO2501.9-41<4[21]
Dendrite-like Fe3O4704-533.1[22]
Hierarchically porous carbons302.71-62.27.3[24]
Table 1  Microwave absorption performance of best microwave absorption materials reported in literatures
Fig.7  Real part (ε′) (a), imaginary part (ε″) (b) of relative complex permittivity and real part (μ′) (c) and imaginary part (μ″) (d) of relative complex permeability
Fig.8  Dielectric loss tangent (tanδε ) (a) and magnetic loss tangent (tanδμ ) (b)
Fig.9  Cole-Cole semicircles (ε′ versus ε″) (a~c) and C0 versus in the range of 1~18 GHz (d)
Fig.10  Impedance matchingand Attenuation constant of S350, S500, S650 composite
1 Liu T, Pang Y, Zhu M, et al. Microporous Co@CoO nanoparticles with superior microwave absorption properties [J]. Nanoscale, 2014, 6: 2447
doi: 10.1039/c3nr05238a
2 Ma X H, Li Y, Shen B, et al. Carbon composite networks with ultrathin skin layers of graphene film for exceptional electromagnetic interference shielding [J]. ACS Appl. Mater. Inter, 2018, 10: 38255
doi: 10.1021/acsami.8b15545
3 Song W L, Guan X T, Fan L Z, et al. Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding [J]. J. Mater. Chem.A, 2015, 3: 2097
4 Li X Y, Huang X L, Liu D P, et al. Synthesis of 3D hierarchical Fe3O4/Graphene composites with high lithium storage capacity and for controlled drug delivery [J]. J. Phys. Chem. C, 2011, 115: 21567
doi: 10.1021/jp204502n
5 Xu D W, Xiong X H, Chen P, et al. Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties [J]. J. Magn. Magn. Mater., 2019, 469: 428
doi: 10.1016/j.jmmm.2018.09.019
6 Wang S S, Zhao Y, Gao M M, et al. Green synthesis of porous cocoon-like rGO for enhanced microwave-absorbing performances [J]. ACS Appl. Mater. Interfaces, 2018, 10: 42865
doi: 10.1021/acsami.8b15416
7 Zeng Q, Chen P, Yu Q, et al. Self-assembly of graphene hollow microspheres with wideband and controllable microwave absorption properties [J]. Chin. J. Mater. Res., 2018, 32: 119
曾 强, 陈 平, 于 祺 等. 具有宽频与可控微波吸收性能的石墨烯空心微球的自组装 [J]. 材料研究学报, 2018, 32: 119
8 Chu H R, Chen P, Yu Q, et al. Preparation and microwave absorption properties of FeCo/Graphene [J]. Chin. J. Mater. Res, 2018, 32: 161
褚海荣, 陈 平, 于 祺 等. FeCo/石墨烯的制备和吸波性能 [J]. 材料研究学报, 2018, 32: 161
doi: 10.11901/1005.3093.2017.339
9 Chen P, Liu J L, Xu D W, et al. A preparation method of graphene foam composite material loaded with magnetic hollow nanospheres [P]. China patent, 201910826320.5, 2019
陈 平, 刘佳良, 徐东卫 等. 一种负载磁性空心纳米球的石墨烯泡沫复合材料的制备方法 [P]. 中国专利, 201910826320.5, 2019
10 Deng J S, Li S M, Zhou Y Y, et al. Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations [J]. J. Colloid Interface Sci., 2018, 509: 406
doi: 10.1016/j.jcis.2017.09.029
11 Liu J L, Chen P, Xu D W, et al. Preparation and microwave absorption properties of magnetic porous RGO@Ni composites [J]. Chin. J. Mater. Res, 2020, 34: 641
刘佳良, 陈 平, 徐东卫 等. 磁性多孔RGO@Ni复合材料的制备和吸波性能 [J]. 材料研究学报, 2020, 34: 641
doi: 10.11901/1005.3093.2020.202
12 Zhu B Y, Miao P, Kong J, et al. Co/C composite derived from a newly constructed metal-organic framework for effective microwave absorption [J]. Cryst. Growth Des., 2019, 19: 1518
doi: 10.1021/acs.cgd.9b00064
13 Liu P B, Huang Y. Decoration of reduced graphene oxide with polyaniline film and their enhanced microwave absorption properties [J]. J. Polym. Res., 2014, 21: 430
doi: 10.1007/s10965-014-0430-7
14 Han M K, Yin X Y, Kong L, et al. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties [J]. J. Mater. Chem. A, 2014, 2: 16403
doi: 10.1039/C4TA03033H
15 Kim T Y, Jung G J, Yoo S, et al. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores [J]. ACS Nano, 2013, 7: 6899
doi: 10.1021/nn402077v
16 Qiu B C, Xing M Y, Zhang J L. Recent advances in three-dimensional graphene based materials for catalysis applications [J]. Chem. Soc. Rev., 2018, 47: 2165
doi: 10.1039/C7CS00904F
17 Li Z X, Li X H, Zong Y, et al. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers [J]. Carbon, 2017, 115: 493
doi: 10.1016/j.carbon.2017.01.036
18 Chu H R, Zeng Q, Chen P, et al. Synthesis and electromagnetic wave absorption properties of matrimony vine-like iron oxide/reduced graphene oxide prepared by a facile method [J]. J. Alloys Compd., 2017, 719: 296
doi: 10.1016/j.jallcom.2017.05.199
19 Lv H L, Ji G B, Liu W, et al. Achieving hierarchical hollow Carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features [J]. J. Mater. Chem. C, 2015, 3: 10232
doi: 10.1039/C5TC02512E
20 Zong M, Huang Y, Zhao Y, et al. Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO-Fe3O4 composites [J]. RSC Adv., 2013, 3: 23638
doi: 10.1039/c3ra43359e
21 Zhou M, Zhang X, Wei J M, et al. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures [J]. J. Phys. Chem., 2011, 115C: 1398
22 Sun G B, Dong B X, Cao M H, et al. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3 and Fe with high performance of microwave absorption [J]. Chem. Mater., 2011, 23: 1587
doi: 10.1021/cm103441u
23 Zhao B, Guo X Q, Zhao W Y, et al. Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/kirkendall effect and their enhanced microwave absorption properties [J]. Nano Res., 2017, 10: 331
doi: 10.1007/s12274-016-1295-3
24 Wu Z C, Tian K, Huang T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance [J]. ACS Appl. Mater. Inter, 2018, 10: 11108
doi: 10.1021/acsami.7b17264
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!