Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (3): 209-220    DOI: 10.11901/1005.3093.2020.228
ARTICLES Current Issue | Archive | Adv Search |
Effect of Zr Contents on Mechanical Properties of Cast AlSi7Mg0.4 Alloys
ZHANG Yunxiang1, ZHAO Haidong1(), ZHU Lin2, LI Changhai2, WU Hanqi2
1.National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China
2.CITIC Dicastal Co. Ltd. , Qinhuangdao 066011, China
Cite this article: 

ZHANG Yunxiang, ZHAO Haidong, ZHU Lin, LI Changhai, WU Hanqi. Effect of Zr Contents on Mechanical Properties of Cast AlSi7Mg0.4 Alloys. Chinese Journal of Materials Research, 2021, 35(3): 209-220.

Download:  HTML  PDF(17417KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ingots of AlSi7Mg0.4 alloys with 0.06%, 0.14% and 0.20% Zr addition respectively were fabricated with gravity casting method. The microstructure analysis of the as-cast alloys shows that (Al, Si)3(Zr, Ti) and π-Fe phases formed in these alloys. Compared with the AlSi7Mg0.4 alloys without Zr, the grain size of the alloys containing Zr is smaller. Strengthening phase (Al, Si)3(Zr, Ti) precipitated in the alloys containing Zr during the solution treatment. After T6 heat treatment, a small amount of Mg in the Fe-rich intermetallics and a little part of coarse (Al, Si)3 (Zr, Ti) phases re-dissolved into the matrix, which decreased the intermetallics sizes. The tensile strength and elongation of the alloys containing Zr are 332 MPa and 8.7%, which are 10% and 90% higher than the alloy without Zr, respectively.

Key words:  metallic materials      AlSi7Mg0.4 alloy      microstructure      mechanical properties      Zr contents      (Al, Si)3(Zr, Ti)     
Received:  11 June 2020     
ZTFLH:  TG166.3  
Fund: Guangdong Province Key Field R & D Program Project(2020B010186002)
About author:  ZHAO Haidong, Tel: (020)87112948-302, E-mail: hdzhao@scut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.228     OR     https://www.cjmr.org/EN/Y2021/V35/I3/209

Fig.1  Casting and dimensions of tensile specimen (mm)
AlloySiMgFeTiSrZrAl
17.130.410.140.150.013-Bal.
26.940.390.130.150.0170.06Bal.
36.890.400.130.130.0120.14Bal.
46.770.400.130.150.0170.20Bal.
Table 1  Chemical composition of the experimental alloys (mass fraction, %)
Fig.2  Age hardening curve of alloys
Fig.3  Microstructures of as-cast alloys (a) alloy 1, (b) alloy 2, (c) alloy 3 and (d) alloy 4
AlloyGrain size/μmSDAS/μm
153.2516.64
251.6410.38
340.3310.70
437.3115.95
Table 2  Effect of Zr contents on size and SDAS of α-Al grains
Fig.4  Phase diagram of Al-Zr binary alloy
Fig.5  SEM micrograph of the as-cast alloys (a) alloy 1, (b) alloy 2, (c) alloy 3 and (d) alloy 4
AlloyPhaseAlSiMgFeZrTiReferenceArea fraction
1π-Fe71.3717.118.852.67--[22]-
β-Fe89.376.67-3.96--[22]-
2π-Fe68.1725.734.931.17--[22]-
(Al, Si)3(Zr, Ti)85.188.060.98-3.292.49[10]<0.10%
3π-Fe68.6519.239.152.97--[22]-
(Al, Si)3(Zr, Ti)49.5427.67--17.954.84[10]0.12%
4π-Fe89.986.183.210.63--[22]-
(Al, Si)3(Zr, Ti)79.4910.93--6.443.14[10]0.33%
Table 3  EDS analyses of the intermetallic phases measured in as-cast alloys (atomic fraction, %) and area fraction
Fig.6  Area-scan maps of the distribution of studied alloys (a~c) alloy 3, (d~f) alloy 4
Fig.7  SEM micrograph of the T6 heat-treated alloys (a) alloy 1, (b) alloy 2, (c) alloy 3 and (d) alloy 4
AlloyPhaseAlSiMgFeZrTiReferenceArea fraction
1β-Fe77.0612.82-10.12--[22]-
β-Fe-282.5811.590.385.45--[22]-
2β-Fe-286.449.55-4.01--[22]-
π-Fe85.6312.361.200.81--[22]-
(Al, Si)3(Zr, Ti)90.295.47--2.381.86[10]<0.01%
3β-Fe-285.528.430.195.86--[22]-
(Al, Si)3(Zr, Ti)69.5220.27--7.552.66[10]0.07%
4β-Fe-294.033.94-2.03--[22]-
(Al, Si)3(Zr, Ti)61.6425.42--7.905.04[10]0.21%
Table 4  EDS analyses of the intermetallic phases measured in T6 treated alloys (atomic fraction, %) and area fraction
Fig.8  The bright field TEM (BF-TEM) micrographs of the T6 treated alloys (a) alloy 1, (b) alloy 2, (c) alloy 3 and (d) alloy 4
AlloyAverage length/nmCross-section/nm2Number density/nm-3
125.02±1.148.34±0.33(9.79±0.66)×10-5
226.14±1.168.58±0.29(9.95±0.47)×10-5
325.33±1.698.46±0.56(9.27±0.75)×10-5
426.68±1.138.05±0.20(9.97±0.59)×10-5
Table 5  Average length, cross-section and number density for the β’’ precipitates derived from TEM results of T6 treated alloys
Fig.9  Bright field TEM images of alloy 3 (a) Al-Si-Zr-Ti precipitates and (b) corresponding SADP along [010] Al axis
Fig.10  TEM images of alloy 4 (a) the Al-Si-Zr-Ti precipitate, (b) fast Fourier transformation (FFT) of Al-Si-Zr-Ti phase along [001] Al axis and (c) TEM-EDS analysis of the Al-Si-Zr-Ti precipitate
AlloyAverage length/nmAspect/nmNumber density/nm-3
2313±336.59±0.03(3.15±0.40)×10-8
3302±526.36±0.50(6.10±1.77)×10-8
4300±226.10±0.41(6.18±1.60)×10-8
Table 6  Average length, aspect and number density for the Al-Si-Zr-Ti precipitates derived from TEM results of T6 treated alloys
Fig.11  HRTEM micrographs (a) semicoherent and (c) coherent interfaces of the Al-Si-Zr-Ti precipitate with α-Al matrix, (b) and (d) corresponding IFFT
AlloyAs castAfter T6 heat treatment
YS/MPaUTS/MPaE / %YS/MPaUTS/MPaE / %
1130±10184±125.14±1.06278±11302±134.55±1.48
2149±5213±77.95±0.97305±6332±58.67±1.09
3135±13195±136.21±1.52301±12316±115.05±1.49
4137±8182±104.13±0.95280±15292±152.94±1.38
Table 7  Mechanical properties of as-cast alloys and T6 heat treated alloys with different Zr content
Fig.12  Tensile fracture morphology (a, b) and SEM-EDS analysis (c, d) of as cas state and T6 heat treatment state of alloy 2 and Tensile fracture morphology (e, f) and SEM-EDS analysis (g, h) of as cas and T6 heat treatment of alloy 4
1 Baradarani B, Raiszadeh R. Precipitation hardening of cast Zr-containing A356 aluminium alloy [J]. Mater. Des., 2011, 32: 935
2 Liu Y Q, Jie W Q, Wang S N, et al. Investigation of rotary bending gigacycle fatigue properties of Al-7Si-0.3Mg alloys [J]. Chin. J. Mater. Res., 2012, 26: 284
刘永勤, 介万奇, 王善娜等. Al-7Si-0.3Mg铸造合金的旋转弯曲疲劳性能研究 [J]. 材料研究学报, 2012, 26: 284
3 Prach O, Trudonoshyn O, Randelzhofer P, et al. Effect of Zr, Cr and Sc on the Al-Mg-Si-Mn high-pressure die casting alloys [J]. Mater. Sci. Eng., 2019, 759A: 603
4 Teng G B, Liu C Y, Li J, et al. Effect of Sc on microstructure and mechanical property of 7055 Al-alloy [J]. Chin. J. Mater. Res., 2018, 32: 112
滕广标, 刘崇宇, 李剑等. 添加Sc对7055铝合金微观结构和力学性能的影响 [J]. 材料研究学报, 2018, 32: 112
5 Xu C, Xiao W L, Zheng R X, et al. The synergic effects of Sc and Zr on the microstructure and mechanical properties of Al-Si-Mg alloy [J]. Mater. Des., 2015, 88: 485
6 Colombo M, Gariboldi E, Morri A. Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al-7Si-0.4Mg alloy modified with 0.25% Er [J]. Mater. Sci. Eng., 2018, 713A: 151
7 Mahmudi R, Sepehrband P, Ghasemi H M. Improved properties of A319 aluminum casting alloy modified with Zr [J]. Mater. Lett., 2006, 60: 2606
8 Huang H L, Dong Y H, Xing Y, et al. Low cycle fatigue behaviour at 300℃ and microstructure of Al-Si-Mg casting alloys with Zr and Hf additions [J]. J. Alloy. Compd., 2018, 765: 1253
9 Jia Z H, Huang H L, Wang X L, et al. Hafnium in aluminum alloys: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 105
10 Rahimian M, Amirkhanlou S, Blake P, et al. Nanoscale Zr-containing precipitates; a solution for significant improvement of high-temperature strength in Al-Si-Cu-Mg alloys [J]. Mater. Sci. Eng., 2018, 721A: 328
11 Yuan W H, Liang Z Y. Effect of Zr addition on properties of Al-Mg-Si aluminum alloy used for all aluminum alloy conductor [J]. Mater. Des., 2011, 32: 4195
12 Meng Y, Cui J Z, Zhao Z H, et al. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting [J]. Mater. Charact., 2014, 92: 138
13 Zhao Q, Wang S X. Aluminum Alloy Selection and Design [M]. Beijing: Chemical Industry Press, 2017: 53
赵晴, 王帅星. 铝合金选用与设计 [M]. 北京: 化学工业出版社, 2017: 53
14 Wang F, Liu Z L, Qiu D, et al. The influence of the effect of solute on the thermodynamic driving force on grain refinement of Al alloys [J]. Metall. Mater. Trans., 2015, 46A: 505
15 Wang F, Liu Z L, Qiu D, et al. Revisiting the role of peritectics in grain refinement of Al alloys [J]. Acta Mater., 2013, 61: 360
16 Wang F, Qiu D, Liu Z L, et al. The grain refinement mechanism of cast aluminium by zirconium [J]. Acta Mater., 2013, 61: 5636
17 Zhang Y, Gao K Y, Wen S P, et al. The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al-Er binary alloy [J]. J. Alloy. Compd., 2014, 610: 27
18 Quested T E, Dinsdale A T, Greer A L. Thermodynamic modelling of growth-restriction effects in aluminium alloys [J]. Acta Mater., 2005, 53: 1323
19 Ceschini L, Morri A, Morri A, et al. Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminium alloy [J]. Mater. Des., 2009, 30: 4525
20 Knipling K E, Dunand D C, Seidman D N. Criteria for developing castable, creep-resistant aluminum-based alloys-A review [J]. Z. Metallkd., 2006, 97: 246
21 Gustafsson G, Thorvaldsson T, Dunlop G L. The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys [J]. Metall. Trans., 1986, 17A: 45
22 Beroual S, Boumerzoug Z, Paillard P, et al. Effects of heat treatment and addition of small amounts of Cu and Mg on the microstructure and mechanical properties of Al-Si-Cu and Al-Si-Mg cast alloys [J]. J. Alloy. Compd., 2019, 784: 1026
23 Marioara C D, Andersen S J, Zandbergen H W, et al. The influence of alloy composition on precipitates of the Al-Mg-Si system [J]. Metall. Mater. Trans., 2005, 36A: 691
24 Gao T, Ceguerra A, Breen A, et al. Precipitation behaviors of cubic and tetragonal Zr-rich phase in Al-(Si-) Zr alloys [J]. J. Alloy. Compd., 2016, 674: 125
25 Gao T, Liu X F. Replacement with Each Other of Ti and Zr in the Intermetallics of Al-(Si-)Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2013, 29: 291
26 Lityñska L, Abou-Ras D, Kostorz G, et al. TEM and HREM study of Al3Zr precipitates in an Al-Mg-Si-Zr alloy [J]. J. Microsc., 2006, 223: 182
27 Huang H L. The effects of Zr and Hf additions on microstructure and high temperature mechanical properties of Al-Si-Mg casting alloy [D]. Chongqing: Chongqing University, 2018
黄惠兰. Zr和Hf元素对Al-Si-Mg铸造合金微观组织和高温力学性能的影响 [D]. 重庆: 重庆大学, 2018
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!