Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (12): 925-932    DOI: 10.11901/1005.3093.2020.486
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Microwave Absorbing Properties of MoS2/CoFe/C Composite
ZHANG Yuan, JI Zhijiang(), XIE Shuai, WANG Jing, SI Tiantian
China Building Material Academy, State Key Laboratory of Green Building Materials, Beijing 100024, China
Cite this article: 

ZHANG Yuan, JI Zhijiang, XIE Shuai, WANG Jing, SI Tiantian. Preparation and Microwave Absorbing Properties of MoS2/CoFe/C Composite. Chinese Journal of Materials Research, 2021, 35(12): 925-932.

Download:  HTML  PDF(11673KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The composite absorbing material of MoS2/CoFe/C was prepared via a two-step process, namely, the MoS2/CoFe2O4 was hydro-thermally synthesized with anhydrous glucose as carbon source and reducing agent in a reasonable material ratio, which then was reduced to MoS2/CoFe/C of ternary-nanometer flower structure in nitrogen atmosphere. The morphology, phase structure and electromagnetic parameters of the ternary nanomaterial were characterized, while the relation of the optimum matching thickness and absorbing property of the composite was assessed with computer simulation. The effect of glucose concentrations on the composition and properties of the composites were investigated. The absorption mechanism was discussed based on the Relaxation Polarization theory. When the thickness is 3 mm the lowest reflectivity of MoS2/CoFe/C composite material at 12.4 GHz can reach -42.9 dB. When the thickness is 4 mm the reflectivity frequency of MoS2/CoFe/C composite material is lower than -10 dB with bandwidth up to 7.1 GHz.

Key words:  composite      electromagnetic wave absorbing materials      hydrothermal reaction      magnetic nanoparticles      dielectric loss     
Received:  12 November 2020     
ZTFLH:  TB333  
Fund: the 14th Five-Year Plan Pre-research Project of State Key Laboratory of Green Building Materials(ZA-23)
About author:  JI Zhijiang, Tel: (010)51167119, E-mail: jzj1964@sina.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.486     OR     https://www.cjmr.org/EN/Y2021/V35/I12/925

Fig.1  XRD patterns of MoS2/CoFe2O4 and MoS2/CoFe/C composites
Fig.2  SEM images taken from of the MoS2/CoFe2O4 (a), MoS2/CoFe/C-0.234 (b), MoS2/CoFe/C-0.468 (c), MoS2/CoFe/C-0.702 composites (d) and EDS mappings of MoS2/CoFe/C-0.468 composite showing the distribution of the Mo, S, C, Fe and Co elements (e~j)
Fig.3  Reflection loss ofMoS2/CoFe2O4 (a), MoS2/CoFe/C-0.234 (b), MoS2/CoFe/C-0.468 (c) and MoS2/CoFe/C-0.702 composites (d)
Fig.4  Magnetic hysteresis loops of MoS2/CoFe/C composites (a) and Raman spectra of MoS2/CoFe/C composites (b)
Fig.5  Real part ε', imaginary part εand dielectric loss tan?δeof complex permittivity, real part μ', imaginary part μ and magnetic loss tan?δμ of complex permeability of MoS2/CoFe2O4 and MoS2/CoFe/C composites
Fig.6  Cole-Cole curves of MoS2/CoFe2O4 (a) and MoS2/CoFe/C-0.234 (b), MoS2/CoFe/C-0.468 (c) and MoS2/CoFe/C-0.702 (d)
1 Zhang W D, Zhang X, Wu H J, et al. Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials [J]. J. Alloys Compd., 2018, 751: 34
2 Long L, Yang E Q, Qi X S, et al. Positive and reverse core/shell structure CoxFe3-xO4/MoS2 and MoS2/CoxFe3-xO4 nanocomposites: selective production and outstanding electromagnetic absorption comprehensive performance [J]. ACS Sustainable Chem. Eng., 2020, 8: 613
3 Cui X Q, Liu W, Gu W H, et al. Two-dimensional MoS2 modified using CoFe2O4 nanoparticles with enhanced microwave response in the X and Ku band [J]. Inorg. Chem. Front., 2019, 6: 590
4 Zhou C H, Wu C, Yan M. Hierarchical FeCo@MoS2 nanoflowers with strong electromagnetic wave absorption and broad bandwidth [J]. ACS Appl. Nano Mater., 2018, 1: 5179
5 Green M, Chen X B. Recent progress of nanomaterials for microwave absorption [J]. J. Mater., 2019, 5: 503
6 Prasad J, Singh A K, Haldar K K, et al. CoFe2O4 nanoparticles decorated MoS2-reduced graphene oxide nanocomposite for improved microwave absorption and shielding performance [J]. RSC Adv., 2019, 9: 21881
7 Chen X L, Wang W, Shi T, et al. One pot green synthesis and EM wave absorption performance of MoS2@nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles [J]. Carbon, 2020, 163: 202
8 Luo J H, Zhang K, Cheng M L, et al. MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption [J]. Chem. Eng. J., 2020, 380: 122625
9 He J, Liu S, Deng L W, et al. Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites [J]. Appl. Surf. Sci., 2020, 504: 144210
10 Aldea A, Bârsan V. Trends in Nanophysics: Theory, Experiment and Technology [M]. Berlin, Heidelberg: Springer, 2010
11 Yang R B, Liang W F. Microwave absorbing characteristics of flake-shaped FeNiMo/epoxy composites [J]. J. Appl. Phys., 2013, 113: 17A315
12 Kim S S, Kim S T, Yoon Y C, et al. Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies [J]. J. Appl. Phys., 2005, 97: 10F905
13 Sheoran A, Kaur J, Kaur P, et al. Graphene based magnetic nanohybrids as promising catalysts for the green synthesis of β-amino alcohol derivatives [J]. J. Mol. Struct., 2020, 1204: 127522
14 Qian M C, Cheng X Y, Sun T T, et al. Synergistic catalytic effect of N-doped carbon embedded with CoFe-rich CoFe2O4 clusters as highly efficient catalyst towards oxygen reduction [J]. J. Alloys Compd., 2020, 819: 153015
15 Li J J, Yang S, Jiao P Z, et al. Three-dimensional macroassembly of hybrid C@CoFe nanoparticles/reduced graphene oxide nano-sheets towards multifunctional foam [J]. Carbon, 2020, 157: 427
16 Li J W, Ding Y Q, Gao Q, et al. Ultrathin and flexible biomass-derived C@CoFe nanocomposite films for efficient electromagnetic interference shielding [J]. Composites, 2020, 190B: 107935
17 Naito Y, Suetake K. Application of ferrite to electromagnetic wave absorber and its characteristics [J]. IEEE Trans. Microwave Theory Techn., 1971, 19: 65
18 Zhang K, Ye M Q, Han A J, et al. Preparation, characterization and microwave absorbing properties of MoS2 and MoS2-reduced graphene oxide (RGO) composites [J]. J. Solid State Chem., 2019, 277: 68
19 An D, Bai L Z, Cheng S S, et al. Synthesis and electromagnetic wave absorption properties of three-dimensional nano-flower structure of MoS2/polyaniline nanocomposites [J]. J. Mater. Sci., 2019, 30: 13948
20 Huang L, Li J J, Wang Z J, et al. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane [J]. Carbon, 2019, 143: 507
21 Wang S S, Zhao Y, Xue H L, et al. Preparation of flower-like CoFe2O4@graphene composites and their microwave absorbing properties [J]. Mater. Lett., 2018, 223: 186
22 Xie C J, Dong X L, Huang H, et al. Dielectric spectra fitting and polarization of Fe/Paraffin nanocomposites [J]. Chin. J. Mater. Res., 2013, 27: 349
谢昌江, 董星龙, 黄 昊等. 纳米Fe/石蜡复合材料的微波介电谱拟合及极化机制 [J]. 材料研究学报, 2013, 27: 349
23 Yan L W, Hong C Q, Sun B Q, et al. In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance [J]. ACS Appl. Mater. Interfaces, 2017, 9: 6320
24 Zhao B, Fan B B, Xu Y W, et al. Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features [J]. ACS Appl. Mater. Interfaces, 2015, 7: 26217
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!