Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (5): 385-391    DOI: 10.11901/1005.3093.2019.568
ARTICLES Current Issue | Archive | Adv Search |
Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7
XIE Lilan(), YANG Dongsheng, LING Jing
School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550001, China
Cite this article: 

XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7. Chinese Journal of Materials Research, 2020, 34(5): 385-391.

Download:  HTML  PDF(4315KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The precursor of TiNb2O7 is prepared via solid-phase synthesis with anatase and Nb2O5 as raw materials and then calcinated at 400℃, 800℃, 900℃, 1000℃ and 1100℃ respectively in air to prepare TiNb2O7 as electrode materials. The prepared materials are characterized by means of thermo-gravimetric analyzer, differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical test. The results show that the main reaction products of anatase and Nb2O5 at 900℃ is Ti2Nb10O29. TiNb2O7 is obtained by the reaction of Ti2Nb10O29 and rutile. The optimum calcination condition of pure monoclinic TiNb2O7 is 1100℃ for 8 h. TiNb2O7 anode material has an initial capacity of 278.4 mAh/g at 0.2C and the initial coulombic efficiency is 82.9%. In the meantime, TiNb2O7 has a good rate capacity, which can still reach 89% after 100 cycles at 1C rate.

Key words:  synthesizing and processing technics for materials      lithium-ion battery      solid-phase synthesis      TiNb2O7      electrochemical performance     
Received:  05 December 2019     
ZTFLH:  TM912.9  
Fund: Guizhou Province Science and Technology Department-Guizhou Normal University Joint Fund Program(LKS[2009]30)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.568     OR     https://www.cjmr.org/EN/Y2020/V34/I5/385

Fig.1  TG-DSC curves of the TiNb2O7 precursor
Fig.2  X-ray diffraction powder patterns of TiNb2O7 obtained at different temperatures
Sintering parameterRaw material400℃-8 h800℃-8 h900℃-8 h1000℃-8 h1100℃-8 h
Anatase23.10%*27.38%22.16%16.84%-0
Rutile---4.18%6.13%0
Nb2O576.90%*72.62%3.86%--0
Ti2Nb10O29--67.42%71.51%43.12%0
TiNb2O7--6.56%7.47%50.75%100%
Rwp%10.57%14.50%15.68%12.87%15.03%
Table 1  XRD standardless quantitative analysis data of each sample obtained at different temperatures
Fig.3  X-ray Rietveld refined patterns of sample sintered at 900℃ for 8 h (a) and 1100℃ for 8 h (b)
Compounds/CrystalLattice parameters (nm)

JCPDS

file no.

structure (space group)This workLiterature[23]
TiNb2O7monoclinic(C2/m(12))a = 2.0376a = 2.035177-1374
b =0.3802b = 0.3801
c = 1.1894c = 1.1882
β (°) =120.19β (°) =120.19

Ti2Nb10O29monoclinic

(A2/m(12))

a = 1.5599a = 1.55772-0159
b = 0.3815b = 0.3814
c = 2.0534c = 2.054
β (°) = 113.683β (°) = 113.683
Table 2  Lattice parameters of TiNb2O7 and Ti2Nb10O29
Fig.4  Scanning electron microscopy images of precursor and TiNb2O7 powders calcined at different temperature and the corresponding magnified images (a, a’) precursor; (b, b’) 400℃; (c, c’) 800℃; (d, d’) 900℃; (e, e’) 1000℃; and (f, f’) 1100℃
Fig.5  Electrochemical performance of TiNb2O7 electrode in a voltage range from 0.8 to 2.5 V (a) Initial charge/discharge curves at 0.2C and (b) Discharge capacity during cycling at different current rates
[1] Yan X M, Feng G Z, Huang X. Research progress of preparation and application of cathode material for lithium ion battery [J]. New Chem. Mater., 2019, 47(07): 22
(严旭明, 冯光炷, 黄雪. 锂离子电池负极材料的制备及应用进展 [J]. 化工新型材料, 2019, 47(07): 22)
[2] Huang J J, Li Z K, Yang S Z, et al. Research progress of composite anode materials with high-capacity for lithium-ion batteries [J]. Carbon Tech., 2019, 38(03): 1
(黄家骏, 李子坤, 杨书展等. 锂离子电池用高容量复合负极材料的研究进展 [J]. 炭素技术, 2019, 38(03): 1)
[3] Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective [J]. J. Am. Chem. Soc., 2013, 135(4): 1167
[4] Marom R, Amalraj S F, Leifer N, et al. A review of advanced and practical lithium battery materials [J]. J. Mater. Chem., 2011, 21(27): 9938
[5] Chen Z H, Belharouak I, Sun Y K, et al. Titanium-based anode materials for safe lithium-ion batteries [J]. Adv. Funct. Mater., 2013, 23(8): 959
[6] Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells [J]. J. Electrochem. Soc., 1995, 142(5): 1431
[7] Armand M, Tarascon J M. Building better batteries [J]. Nature., 2008, 451(7179): 652
[8] Zhu G N, Wang Y G, Xia Y Y. Ti-based compounds an anode materials for Li-ion batteries [J]. Energy Environ. Sci., 2012, (5): 6652
[9] Li N, Chen Z P, Ren W C, et al. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates [J]. Proc. Nat. Acad. Sci., 2012, 109(43): 17360
[10] Ganapathy S,Wagemaker M. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion [J]. ACS Nano., 2012, 6(10): 8702
[11] Guo J, Zuo W, Cai Y, et al. A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature [J]. J. Mater. Chem. A., 2015, (3): 4938
[12] Wu X Y, Miao J, Han W Z, et al. Investigation on Ti2Nb10O29 anode material for lithium-ion batteries [J]. Electrochem. Commun., 2012, (25): 39
[13] Han J T, Huang Y H, John B, et al. New anode framework for rechargeable lithium batteries [J]. Chem. Mater., 2011, (23): 2027
[14] Wadsley A D. Mixed Oxides of titanium and niobium.Ⅱ. the crystal structures of the dimorphic forms of Ti2Nb10O29 [J]. Acta Crystallogr., 1961, (14): 664
[15] Wang W L, Oh Byeong-Yun, Park Ju-Young, et al. Solid-state synthesis of Ti2Nb10O29/reduced graphene oxide composites with enhanced lithium storage capability [J]. J. Power Sources., 2015, 272
[16] Liu G Y, Jin B, Zhang R X, et al. Synthesis of Ti2Nb10O29/C composite as an anode material for lithium-ion batteries [J]. Int. J. Hydrogen Energy., 2016, (41): 14807
[17] Tang K, Mu X K, Peter A, et al. “Nano-Pearl-String” TiNb2O7 as Anodes for Rechargeable Lithium Batteries [J]. Adv. Energy Mater., 2013, (3): 49
[18] Cheng Q S, Liang J W, Lin N, et al. Porous TiNb2O7 Nanospheres as ultra Long-life and High-power Anodes for Lithium-ion Batteries [J]. Electrochimica Acta, 2015, (176): 456
[19] Yang C, Lin C F, Lin S W, et,al. Cu0.02Ti0.94Nb2.04O7:an advanced anode material for lithium-ion batteries of electric vehicles [J]. J. Power Sources., 2016, (328): 336
[20] Ram Avtar Jat, Samui Pradeep, Gupta N. K., et al. Synthesis, characterization and heat capacities of ternary oxides in the Ti-Nb-O system [J]. Thermochim. Acta., 2014: 31
[21] Lu X, Jian Z L, Fang Z, et al. Atomic-scale investigation on lithium storage mechanism in TiNb2O7 [J]. Energy Environ. Sci., 2011, (4): 2638
[22] Han J T, John B. Goodenough. 3-V Full Cell Performance of Anode Framework TiNb2O7/Spinel LiNi0.5Mn1.5O4 [J]. Chem. Mater., 2011, (23): 3404
[23] Wu E.. POWD-an Interactive Powder Diffraction Data Interpretation and Indexing Program, Version 2.2, School of Physical Sciences, Flinders University of South Australia, Bedford Park, Austarlia, 1995
[1] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[2] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[3] XIAO Lan, YU Wenhua, HUANG Hao, WU Aimin, JIN Xiaozhe. Preparation and Performance of TiS3 Nanoflakes as Anode Material for Lithium-ion Batteries[J]. 材料研究学报, 2022, 36(11): 821-828.
[4] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[5] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[6] ZUO Cheng, DU Yunhui, ZHANG Peng, WANG Yujie, Cao Haitao. Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3[J]. 材料研究学报, 2020, 34(8): 621-627.
[7] MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. 材料研究学报, 2020, 34(3): 217-224.
[8] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
[9] YANG Zhanxin, WU Qiong, REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao. Massive Preparation and Supercapacitor Performance of Layered Ti3C2[J]. 材料研究学报, 2020, 34(11): 861-867.
[10] Pengfei ZHOU,Peng ZHANG,Yunhui DU,Yujie WANG,Cheng ZUO. Preparation and Electrochemical Properties of Li-rich Cathode Material Prepared by Spray Drying Method[J]. 材料研究学报, 2019, 33(7): 481-487.
[11] Shuang PAN,Xue ZHUANG,Bing WANG,Lidan TANG,Liang LIU,Jingang QI. Preparation and Properties of Carbon Coated Manganese Dioxide Electrode Materials[J]. 材料研究学报, 2019, 33(7): 530-536.
[12] Yadan XIAO,Xiaozhe JIN,Hao HUANG,Aimin WU,Song GAO,Jia LIU. Preparation and Electrochemical Behavior of MoP Nanoparticles as Anode Material for Lithium-ion Batteries[J]. 材料研究学报, 2019, 33(1): 65-71.
[13] Rongzhen GAO, Xiaodong LI, Wenfeng LIU, Yanhong YIN, Shuting YANG. Synthesis and Li-storage Performance of Hierarchical Spheroid Composites of MgFe2O4/C[J]. 材料研究学报, 2018, 32(9): 713-720.
[14] Ziqing LI, Wenxiu HE, Yongqiang ZHANG, Huiying YU, Xingsheng LI, Bin LIU. Effect of Different Nitrogen Sources on Structure and Properties of Nitrogen-doped Graphene[J]. 材料研究学报, 2018, 32(8): 616-624.
[15] Qiang WANG, Ruiting HAO, Qichen ZHAO, Sijia LIU. Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets[J]. 材料研究学报, 2018, 32(6): 409-414.
No Suggested Reading articles found!