|
|
Magnetization Reversal Field and Magneto-Resistor of Spin Valve |
TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai( ) |
Key Laboratory of Sensor and Sensing Technology of Gansu Province, Institute of Sensor Technology, Gansu Academy of Sciences, Lanzhou 730000, China |
|
Cite this article:
TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve. Chinese Journal of Materials Research, 2020, 34(4): 272-276.
|
Abstract Two kinds of spin valve composed of multilayered films of Ta/CoFe/Fe/Au/Fe/IrMn/Ta and Ta/CoFe1/Au/CoFe2/IrMn/Ta were deposited respectively on oxidized silicon wafer by high vacuum magnetron sputtering. Their magneto-resistor characteristics and magnetization reversal fields were tailored by selectively adjusting the processing parameters for each of the function layers. The microstructure and thickness of the multilayered films were characterized by means of TEM. The hysteresis loops and magneto resistance (MR) curves were measured by VSM and four-probe measurement tests. Results show that there exists a relationship of vibration attenuation for the MR values with the thickness of the middle isolation layer Au. Namely, with the increase of the thickness of the Au layer, the vibration attenuation weakened. The coercive force and saturation magnetization of the multilayered films were determined by the thickness of each different function layers, which then alter the MR values directly. There was a best MR value for the multilayered structure of Ta/CoFe1/Au/CoFe2/IrMn/Ta with the following film thickness for each layer: 6/6/3.8/6/9/6 nm.
|
Received: 05 July 2019
|
|
Fund: the Fund for Less Developed Regions of National Natural Science Foundation of China(No. 51761001);Youth Science and Technology Innovation Fund Project of Gansu Academy of Sciences(No. 2017QN-02);Natural Science Foundation of Gansu Province(No. 17JR5RA180);Application Technology Res-earch and Development Project of Gansu Academy of Sciences(No. 2018JK-16);Innovative Team Construction Project of Gansu Academy of Science(No. 2020CX005-01);Lanzhou Talent Innovation and Entrepreneurship Project, China(No. 2016-RC-80);the 2018 "Western Young Scholars" Project |
[1] |
Thomson W. On the Electro-dynamic qualities of metals: -effects of magnetization on the electric conductivity of nickel and of iron [J]. Proc. R. Soc. London, 1856, 8: 546
|
[2] |
Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange [J]. Phys. Rev. BCondens. Matter., 1989, 39(7): 4828
doi: 10.1103/physrevb.39.4828
pmid: 9948867
|
[3] |
Baibich M N, Broto J M, Fert A F, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices [J]. Phys. Rev. Lett., 1988, 61(21): 2472
doi: 10.1103/PhysRevLett.61.2472
pmid: 10039127
|
[4] |
Berkowitz A E, Mitchell J R, Carey M J, et al. Giant magnetoresistance in heterogeneous Cu-Co alloys [J]. Phys. Rev. Lett., 1992, 68(25): 3745
doi: 10.1103/PhysRevLett.68.3745
pmid: 10045786
|
[5] |
Xiao J, Jiang J, Chien C. Giant magnetoresistance in nonmultilayer magnetic systems [J]. Phys. Rev. Lett., 1992, 68(25): 3749
doi: 10.1103/PhysRevLett.68.3749
pmid: 10045787
|
[6] |
Von H R, Wecker J, Holzapfel B, et al. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films [J]. Phys. Rev. Lett., 1993, 71(14): 2331
doi: 10.1103/PhysRevLett.71.2331
pmid: 10054646
|
[7] |
Miyazaki T, Tezuka N. Giant magnetic tunneling effect in Fe/Al2O3 /Fe junction [J]. J. Magn. Magn. Mater., 1995, 139(3): L231
|
[8] |
Butler W H, Zhang X G, Schulthess T C, et al. Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches [J]. Phys. Rev. BCondens. Matter, 2001, 63(5): 054416
|
[9] |
Mathon J, Umerski A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction [J]. Phys. Rev. B., 2001, 63(22): 220403
|
[10] |
Yuasa S, Nagahama T, Fukushima A, et al. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions [J]. Nat. Mater., 2004, 3(12): 868
doi: 10.1038/nmat1257
pmid: 15516927
|
[11] |
Parkin S S P, Kaiser C, Panchula A, et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers [J]. Nat. Mater., 2004, 3(12): 862
doi: 10.1038/nmat1256
pmid: 15516928
|
[12] |
Ikeda S, Miura K, Yamamoto H, et al. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction [J]. Nat. Mater., 2010, 9(9): 721
doi: 10.1038/nmat2804
pmid: 20622862
|
[13] |
He J L, Ji S J, Liu Jet al. Review of Current sensor technology based on giant magneto resistive effect and possible applications for smart grids [J]. Power System Technology. 2011, (5): 8
|
|
(何金良, 嵇士杰, 刘俊等. 基于巨磁电阻效应的电流传感器技术及在智能电网中的应用前景 [J]. 电网技术, 2011, (5): 8)
|
[14] |
Zhang C Q, Zhou F, Qu B J, et al. Study of a novel biosensor based on GMR effect [J]. Micronanoelectronic Technology., 2007, 44(Z1): 373
|
|
(张超奇, 周非, 曲炳郡等. 基于GMR效应的新型生物传感器研究 [J]. 微纳电子技术, 2007, 44(Z1): 373)
|
[15] |
Mott, N. F. The Electrical Conductivity of Transition Metals [J]. Proc. R. Soc. London, Ser. A, 1936, 153(880): 699
|
[16] |
Dieny B, Gurney B A, Metin S, et al. Magnetoresistive sensor based on the spin valve effect [P]. US, US5159513A, 1993
|
[17] |
Gao X P, Song Y Z, Han G L, et al. Tune the MR of spin valve by using the pinned layer [J]. Journal of GanSu Sciences, 2014, (3): 59
|
|
(高晓平, 宋玉哲, 韩根亮等. 利用被钉扎层调控自旋阀的磁电阻值 [J]. 甘肃科学学报, 2014, (3): 59)
|
[18] |
Parkin S S P, More N, Roche K P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr [J]. Phys. Rev. Lett., 1990, 64(19): 2304
doi: 10.1103/PhysRevLett.64.2304
pmid: 10041640
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|