Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (4): 272-276    DOI: 10.11901/1005.3093.2019.330
ARTICLES Current Issue | Archive | Adv Search |
Magnetization Reversal Field and Magneto-Resistor of Spin Valve
TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai()
Key Laboratory of Sensor and Sensing Technology of Gansu Province, Institute of Sensor Technology, Gansu Academy of Sciences, Lanzhou 730000, China
Cite this article: 

TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve. Chinese Journal of Materials Research, 2020, 34(4): 272-276.

Download:  HTML  PDF(2885KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Two kinds of spin valve composed of multilayered films of Ta/CoFe/Fe/Au/Fe/IrMn/Ta and Ta/CoFe1/Au/CoFe2/IrMn/Ta were deposited respectively on oxidized silicon wafer by high vacuum magnetron sputtering. Their magneto-resistor characteristics and magnetization reversal fields were tailored by selectively adjusting the processing parameters for each of the function layers. The microstructure and thickness of the multilayered films were characterized by means of TEM. The hysteresis loops and magneto resistance (MR) curves were measured by VSM and four-probe measurement tests. Results show that there exists a relationship of vibration attenuation for the MR values with the thickness of the middle isolation layer Au. Namely, with the increase of the thickness of the Au layer, the vibration attenuation weakened. The coercive force and saturation magnetization of the multilayered films were determined by the thickness of each different function layers, which then alter the MR values directly. There was a best MR value for the multilayered structure of Ta/CoFe1/Au/CoFe2/IrMn/Ta with the following film thickness for each layer: 6/6/3.8/6/9/6 nm.

Key words:  metal matrix composites      spin valve      magnetron sputtering      magneto-resistor     
Received:  05 July 2019     
ZTFLH:  TM271  
Fund: the Fund for Less Developed Regions of National Natural Science Foundation of China(No. 51761001);Youth Science and Technology Innovation Fund Project of Gansu Academy of Sciences(No. 2017QN-02);Natural Science Foundation of Gansu Province(No. 17JR5RA180);Application Technology Res-earch and Development Project of Gansu Academy of Sciences(No. 2018JK-16);Innovative Team Construction Project of Gansu Academy of Science(No. 2020CX005-01);Lanzhou Talent Innovation and Entrepreneurship Project, China(No. 2016-RC-80);the 2018 "Western Young Scholars" Project

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.330     OR     https://www.cjmr.org/EN/Y2020/V34/I4/272

No. of sampleStructurePower/Wd / nm
ITa/CoFe/Fe/Au/Fe/IrMn/Ta4520/20/20/8/20/30/20
IITa/CoFe1/Au/CoFe2/IrMn/Ta256/6/1.9~5.8/6/9/6
IIITa/CoFe1/Au/CoFe2/IrMn/Ta256/6/3.8/6/5.4~10.8/6
IVTa/CoFe1/Au/CoFe2/IrMn/Ta256/3.6~8.4/3.8/8.4~3.6/9/6
Table 1  Technologic parameters of the typical sample
Fig.1  TEM cross section of sample I
Fig.2  MR% under different IrMn layer thickness for Sample II
Fig.3  Hysteresis loop under different IrMn layer thickness (a), hysteresis loop of irmn layer 12 nm (b), magnetic resistance characteristic curve under different irmn layer thickness (c) and magnetic resistance characteristic curve of IrMn layer 12 nm (d) of sample III
Fig.4  Hysteresis loop under different CoFe1, CoFe2 layer thickness (a) and magnetic resistance characteristic curve under different CoFe1, CoFe2 layer thickness (b) of sample IV
[1] Thomson W. On the Electro-dynamic qualities of metals: -effects of magnetization on the electric conductivity of nickel and of iron [J]. Proc. R. Soc. London, 1856, 8: 546
[2] Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange [J]. Phys. Rev. BCondens. Matter., 1989, 39(7): 4828
doi: 10.1103/physrevb.39.4828 pmid: 9948867
[3] Baibich M N, Broto J M, Fert A F, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices [J]. Phys. Rev. Lett., 1988, 61(21): 2472
doi: 10.1103/PhysRevLett.61.2472 pmid: 10039127
[4] Berkowitz A E, Mitchell J R, Carey M J, et al. Giant magnetoresistance in heterogeneous Cu-Co alloys [J]. Phys. Rev. Lett., 1992, 68(25): 3745
doi: 10.1103/PhysRevLett.68.3745 pmid: 10045786
[5] Xiao J, Jiang J, Chien C. Giant magnetoresistance in nonmultilayer magnetic systems [J]. Phys. Rev. Lett., 1992, 68(25): 3749
doi: 10.1103/PhysRevLett.68.3749 pmid: 10045787
[6] Von H R, Wecker J, Holzapfel B, et al. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films [J]. Phys. Rev. Lett., 1993, 71(14): 2331
doi: 10.1103/PhysRevLett.71.2331 pmid: 10054646
[7] Miyazaki T, Tezuka N. Giant magnetic tunneling effect in Fe/Al2O3 /Fe junction [J]. J. Magn. Magn. Mater., 1995, 139(3): L231
[8] Butler W H, Zhang X G, Schulthess T C, et al. Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches [J]. Phys. Rev. BCondens. Matter, 2001, 63(5): 054416
[9] Mathon J, Umerski A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction [J]. Phys. Rev. B., 2001, 63(22): 220403
[10] Yuasa S, Nagahama T, Fukushima A, et al. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions [J]. Nat. Mater., 2004, 3(12): 868
doi: 10.1038/nmat1257 pmid: 15516927
[11] Parkin S S P, Kaiser C, Panchula A, et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers [J]. Nat. Mater., 2004, 3(12): 862
doi: 10.1038/nmat1256 pmid: 15516928
[12] Ikeda S, Miura K, Yamamoto H, et al. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction [J]. Nat. Mater., 2010, 9(9): 721
doi: 10.1038/nmat2804 pmid: 20622862
[13] He J L, Ji S J, Liu Jet al. Review of Current sensor technology based on giant magneto resistive effect and possible applications for smart grids [J]. Power System Technology. 2011, (5): 8
(何金良, 嵇士杰, 刘俊等. 基于巨磁电阻效应的电流传感器技术及在智能电网中的应用前景 [J]. 电网技术, 2011, (5): 8)
[14] Zhang C Q, Zhou F, Qu B J, et al. Study of a novel biosensor based on GMR effect [J]. Micronanoelectronic Technology., 2007, 44(Z1): 373
(张超奇, 周非, 曲炳郡等. 基于GMR效应的新型生物传感器研究 [J]. 微纳电子技术, 2007, 44(Z1): 373)
[15] Mott, N. F. The Electrical Conductivity of Transition Metals [J]. Proc. R. Soc. London, Ser. A, 1936, 153(880): 699
[16] Dieny B, Gurney B A, Metin S, et al. Magnetoresistive sensor based on the spin valve effect [P]. US, US5159513A, 1993
[17] Gao X P, Song Y Z, Han G L, et al. Tune the MR of spin valve by using the pinned layer [J]. Journal of GanSu Sciences, 2014, (3): 59
(高晓平, 宋玉哲, 韩根亮等. 利用被钉扎层调控自旋阀的磁电阻值 [J]. 甘肃科学学报, 2014, (3): 59)
[18] Parkin S S P, More N, Roche K P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr [J]. Phys. Rev. Lett., 1990, 64(19): 2304
doi: 10.1103/PhysRevLett.64.2304 pmid: 10041640
[1] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[2] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[3] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[4] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[5] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[6] ZHANG Zeling, WANG Shiqi, XU Bangli, ZHAO Yuhao, ZHANG Xuhai, FANG Feng. Electrocatalytic Oxygen Evolution Performance of High Entropy FeCoNiMoCr Alloy Thin Film Electrode[J]. 材料研究学报, 2021, 35(3): 193-200.
[7] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[8] XIE Mingling, ZHANG Guang'an, SHI Xing, TAN Xi, GAO Xiaoping, SONG Yuzhe. Anti-oxidization and Electronic Properties of Ti Doped MoS2 Films[J]. 材料研究学报, 2021, 35(1): 59-64.
[9] WANG Shiqi,HUO Wenyi,XU Zhengchao,ZHANG Xuhai,ZHOU Xuefeng,FANG Feng. Fabrication of Films of Co Doped TiO2 Nanotube Array and their Photocatalytic Reduction Performance[J]. 材料研究学报, 2020, 34(3): 176-182.
[10] Yinsheng HU,Huan YU,Zhifeng XU,Changchun CAI,Mingming NIE. Effect of Fiber Preheating Temperature on Mechanical Properties of Continuous Al2O3f/Al Composites[J]. 材料研究学报, 2019, 33(5): 361-370.
[11] Xiaodong LIU,Shuyong TAN,Wenyi HUO,Xuhai ZHANG,Qiyue SHAO,Feng FANG. Effect of Nitrogen Flow Ratio on Microstructure and Property of High-Entropy Alloy Films (CoCrFeNi)Nx Prepared by Magnetron Sputtering[J]. 材料研究学报, 2019, 33(3): 185-190.
[12] Rongzhen GAO, Xiaodong LI, Wenfeng LIU, Yanhong YIN, Shuting YANG. Synthesis and Li-storage Performance of Hierarchical Spheroid Composites of MgFe2O4/C[J]. 材料研究学报, 2018, 32(9): 713-720.
[13] Wanqi QIU, Shulin WANG, Yitian CHENG, Zhongwu LIU, Xichun ZHONG, Dongling JIAO, Kesong ZHOU. Low-temperature Deposition of α-(Al,Cr)2O3 Films by Reactive Sputtering Method[J]. 材料研究学报, 2018, 32(4): 278-282.
[14] Yanxue WANG, Ruiwu LI, Wei FAN, Yuanyuan GUO, Yanwen ZHOU, Fayu WU. Effect of Annealing Oxygen Partial Pressure on Transmittance and Conductivity of AZO Thin Films[J]. 材料研究学报, 2018, 32(11): 861-866.
[15] Haiyang CHEN, Fei HE, Xuhai ZHANG, Qiyue SHAO, Feng FANG. Photocatalytic Reduction Properties of Palladium and Nitrogen Co-Doped TiO2 Thin Films[J]. 材料研究学报, 2017, 31(4): 255-260.
No Suggested Reading articles found!