Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (3): 231-240    DOI: 10.11901/1005.3093.2019.446
ARTICLES Current Issue | Archive | Adv Search |
Grain Size Effect on Microstructure Evolution and Properties of 304 Austenitic Stainless Steel
SUN Jingli(),ZHOU Haitao,CHEN Li,WU Hong,LIU Weili,YAO Fei,XU Yuling
Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600,China
Cite this article: 

SUN Jingli,ZHOU Haitao,CHEN Li,WU Hong,LIU Weili,YAO Fei,XU Yuling. Grain Size Effect on Microstructure Evolution and Properties of 304 Austenitic Stainless Steel. Chinese Journal of Materials Research, 2020, 34(3): 231-240.

Download:  HTML  PDF(3390KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

304 austenitic stainless steel was pre-heated in the conditions of different temperatures and time to produce samples with close texture but different grain size. Then the effect of the subsequent compression and heat treatment on the microstructure evolution and properties of the obtained samples was investigated. Results show that the initial grain size played an important role in the final texture of the sample after deformation and heating. The texture in the initial sample with coarse grains changed much more than that in the sample with finer grains. For the samples with close textures, grain size has greater effect on their tensile strength; For samples with different texture, the texture has greater effect on mechanical properties rather than the grain size and micro stain. During the deformation and subsequent heating, the increase of macro strain within the grains and high angle boundaries with high energies lowered the corrosion resistance of 304 steel. However, after deformation, the preferred orientation texture with four planes of close-packed lattice emerged on the samples, thereby, the corrosion resistance of the steel could be increased to some extent.

Key words:  metallic materials      microstructure      EBSD      grain size      grain boundary engineering     
Received:  15 September 2019     
ZTFLH:  TB31  
Fund: Shanghai Pujiang Program(15PJ1433600)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.446     OR     https://www.cjmr.org/EN/Y2020/V34/I3/231

Fig.1  Schematic diagram describing the sample cutting direction
Fig.2  Orientation maps of R1-1# (a) and R1-2# (b)
Fig.3  Inverse pole figures of R1-1#, RD (a); R1-2#, RD (b); R1-1#, ND (c); R1-2#, ND (d); R1-1#, TD (e) and R1-2#, TD (f)
SpecimenRm/MPaHRB(RD)HRB(ND)HRB(TD)
R1-1#659±2.180.2±1.182.5±0.881.3±3.7
R1-2#625±2.379.5±3.889.9±0.989.1±2.3
Table 1  Intial mechanical properties of pre-heated samples
Fig. 4  Map showing the microstructure of R2-1#-10% (a) band contrast, (b) IPFX+GB and (c) inverse pole figures
Fig.5  Map showing the microstructure of R2-2#-10% (a) band contrast, (b) IPFX+GB and (c) inverse pole figures
Fig.6  Map showing the microstructure of R3-1#-10% (a) IPFX+GB, (b) grain boundaries and (c) inverse pole figures
Fig. 7  Map showing the microstructure of R3-2#-10% (a) IPFX+GB, (b) grain boundaries and (c) inverse pole figures
SpecimenCSLΣ3Σ9Σ27HAGBLAGB
R1-1#59.652.61.90.7103.63.9
R3-1#-10%76.268.03.51.1112.32.4
R1-2#34.432.30.50.253.55.5
R3-2#-10%54.846.72.91.199.03.5
Table 2  Length of the grain boundaries per unit area
SpecimenCSL/%Σ3/%Σ9/%Σ27/%
R1-1#57.650.81.80.7
R3-1#-10%67.860.63.11.0
R1-2#64.360.41.00.4
R3-2#-10%55.347.22.91.1
Table 3  Fraction of special grain boundaries per unit area
Specimen<2°/%<5°/%<10°/%
R1-1#14.172.499.3
R3-1#-10%8.768.8100
R1-2#92.6100-
R3-2#-10%23.883.6100
Table 4  Maximum orientation distribution for different sam-ples
SpecimenRm/MPaHRB(RD)HRB(ND)HRB(TD)
R3-1#-10%628±3.077±1.878.8±1.778.5±1.4
R3-2#-10%624±2.674.3±3.577.1±1.576.4±3.1
Table 5  Mechanical properties of deformed and heated samples
Fig.8  Surface topography after pitting experiment for specimen (a) R1-1#; (b) R1-2#; (c) R3-1#-10%; (d) R3-2#-10%
SpecimenA/m2Wb/gWa/gt/hυ/g?(m2?h)-1
R1-1#0.0007976.29216.2354481.48
R3-1#-10%0.0005474.08984.0436481.76
R1-2#0.0006124.72124.6853481.20
R3-2#-10%0.0007045.38585.3226481.87
Table 6  Experiment data for the pitting corrosion test
[1] Jing X Z, Chen W, Yang W M. Metal Material Application Handbook [M]. Xi’an: Shangxi Science and Technology Press, 1989
[1] 荆秀芝, 陈文, 杨武鸣. 金属材料应用手册 [M]. 西安: 陕西科学技术出版社, 1989
[2] China Aviation Materials Application Manual Editing Committee. China Aeronautical Materials Handbook I: Structural Steel & Stainless Steel [M]. 2nd ed. Beijing: China Standards Press, 2002
[2] 《中国航空材料应用手册》编辑委员会. 中国航空材料手册-第1卷-结构钢 不锈钢 [M]. 2版. 北京: 中国标准出版社, 2002
[3] Sun J L, Zou D, Li L, et al. Localized corrosion resistance of three commonly-used stainless steels [J]. Chin. J. Mater. Res., 2017, 31: 665
[3] 孙京丽, 邹丹, 金晶等. 三种常用不锈钢的耐局部腐蚀性能 [J]. 材料研究学报, 2017, 31: 665
[4] Sun J L, Chen B, Liu F, et al. Effect of heat treatment on microstructure and pitting corrosion resistance of austenitic stainless steel [J]. Heat Treat. Met., 2019, 44: 119
[4] 孙京丽, 陈 斌, 刘 帆等. 热处理对奥氏体不锈钢微观组织和耐点蚀性能的影响 [J]. 金属热处理, 2019, 44: 119
[5] Fang X Y, Wang W G, Guo H, et al. 3n special boundary distributions of the cold-rolled and annealed 304 stainless steel [J]. Acta Metall. Sin., 2007, 43: 1239
[5] 方晓英, 王卫国, 郭 红等. 304不锈钢冷轧退火∑3n特殊晶界分布研究 [J]. 金属学报, 2007, 43: 1239
[6] Luo X, Xia S, Li H, et al. Effect of grain boundary character distribution on stress corrosion cracking in 304 stainless steel [J]. J. Shanghai Univ. (Nat. Sci. Edit)., 2010, 16: 177
[6] 罗 鑫, 夏 爽, 李 慧等. 晶界特征分布对304不锈钢应力腐蚀开裂的影响 [J]. 上海大学学报(自然科学版), 2010, 16: 177
[7] Fang X Y, Cai Z X, Wang W G. Effect of pre-treatment on grain boundary characteristic distribution of cold-rolled and annealed austenitic stainless steel [J]. Hot Working Technol., 2011, 40(8): 162
[7] 方晓英, 蔡正旭, 王卫国. 预处理状态对轧制退火后奥氏体不锈钢晶界特征分布的影响 [J]. 热加工工艺, 2011, 40(8): 162
[8] Shimada M, Kokawa H, Wang Z J, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering [J]. Acta Mater., 2002, 50: 2331
[9] Watanabe T. An approach to grain boundary design for strong and ductile polycrystals [J]. Res. Mech., 1984, 11: 47
[10] Lin P, Palumbo G, Erb U, et al. Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600 [J]. Scr. Metall. Mater., 1995, 33: 1387
[11] Sun H Y, Zhou Z J, Wang M, et al. Effect of thermomechanical parameters on ∑3n Grain boundaries and grain boundary networks of a new superaustenitic stainless steel [J]. J. Iron Steel Res. Int., 2014, 21: 109
[12] Fang X Y, Wang W G, Cai Z X, et al. Study on grain boundary character distributions in annealed 304 stainless steel annealed at high temperature and low temperature after slight cold-rolling [J]. Hot Working Technol., 2010, 39(16): 138
[12] 方晓英, 王卫国, 蔡正旭等. 小形变冷轧304不锈钢高温和低温退火晶界特征分布研究 [J]. 热加工工艺, 2010, 39(16): 138
[13] Jin Y X, Jia Y H, Guo Y H. Effect of cold deformation on grain boundary distribution and microtexture of 1Cr18Ni9 [J]. J. Jiangsu Univ. Sci. Technol., 2008, 22(14): 33
[13] 金云学, 贾雨海, 郭宇航. 冷变形对1Cr18Ni9晶界分布及微织构的影响 [J]. 江苏科技大学学报(自然科学版), 2008, 22(4): 33
[14] Wang K, Chen W J. The optimization process of grain boundary character distribution in 316 Saustenitic stainless steel including Nb [J]. Metal World, 2012(2): 57
[14] 王 坤, 陈文觉. 含铌316不锈钢晶界特征分布优化工艺的探索 [J]. 金属世界, 2012, (2): 57
[15] Sun B, Gao L H, Li X Y. Optimization research of inter-crystalline corrosion-resistant process for 316 stainless steels [J]. Hot Work. Technol., 2009, 38(16): 38
[15] 孙 兵, 高林寒, 李小蕴. 316不锈钢抗晶间腐蚀工艺优化的研究 [J]. 热加工工艺, 2009, 38(16): 38
[16] Sun J L, Trimby P W, Yan F K, et al. Grain size effect on deformation twinning propensity in ultrafine-grained hexagonal close-packed titanium [J]. Scr. Mater., 2013, 69: 428
[17] Sun J L, Trimby P W, Si X, et al. Nano twins in ultrafine-grained Ti processed by dynamic plastic deformation [J]. Scr. Mater., 2013, 68: 475
[18] Unnikrishnan R, Idury K S N S, Ismail T P, et al. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments [J]. Mater. Charact., 2014, 93: 10
[19] Ha K F. Microscopic Theory of Mechanical Properties of Metals [M]. Beijing: Science Press, 1983
[19] 哈宽富. 金属力学性质的微观理论 [M]. 北京: 科学出版社, 1983
[20] Yu Y N. Foundation of Materials Science [M]. Beijing: Higher Education Press, 2006
[20] 余永宁. 材料科学基础 [M]. 北京: 高等教育出版社, 2006
[21] Randle V. Twinning-related grain boundary engineering [J]. Acta Mater., 2004, 52: 4067
[22] Stratulat A, Duff J A, Marrow T J. Grain boundary structure and intergranular stress corrosion crack initiation in high temperature water of a thermally sensitised austenitic stainless steel, observed in situ [J]. Corros. Sci., 2014, 85: 428
[23] Bozzolo N, Dewobroto N, Wenk H R, et al. Microstructure and microtexture of highly cold-rolled commercially pure titanium [J]. J. Mater. Sci., 2007, 42: 2405
[24] Tsuru T, Latanision R M. Corrosion resistance of microcrystalline stainless steels [J]. J. Electrochem. Soc., 1982, 129: 1402
[25] Hasegawa M, Osawa M. Corrosion behavior of ultrafine grained austenitic stainless steel [J]. Corrosion, 1984, 40: 371
[26] Shi J H, Wu B L, Liu G. Study on corrosion property of 316L stainless steel with nanocrystalline surface [J]. J. Mater. Eng., 2005, (10): 42
[26] 石继红, 武宝林, 刘 刚. 316L不锈钢表面纳米化后腐蚀性能研究 [J]. 材料工程, 2005, (10): 42
[27] Lang F J, Ruan W H, Li M C, et al. Influence of temperature on corrosion of 316L stainless steel in seawater [J]. Corros. Sci. Prot. Technol., 2012, 24: 61
[27] 郎丰军, 阮伟慧, 李谋成等. 温度对316L不锈钢耐海水腐蚀性能的影响 [J]. 腐蚀科学与防护技术, 2012, 24: 61
[28] Rodriguez P. Influence of metallurgical variables on corrosion [J]. Key Eng. Mater., 1989, 35-36: 31
[29] Li G D, Wang Y, Cao Z Q. Effect of refined grain size on corrosion behavior of metal Cr in media containing chloride ions [J]. CIESC J., 2012, 63: 560
[30] Chong P H, Liu Z, Wang X Y, et al. Pitting corrosion behaviour of large area laser surface treated 304L stainless steel [J]. Thin Solid Films, 2004, 453-454: 388
[31] Yasuda M, Weinberg F, Tromans D. Pitting corrosion of Al and Al-Cu single crystals [J]. J. Electrochem. Soc., 1990, 137: 3708
[32] Park C J, Lohrengel M M, Hamelmann T, et al. Grain-dependent passivation of surfaces of polycrystalline zinc [J]. Electrochim. Acta, 2002, 47: 3395
[33] Irene E A, Massoud H Z, Tierney E. Silicon oxidation studies: silicon orientation effects on thermal oxidation [J]. J. Electrochem. Soc., 1986, 133: 1253
[34] Ashton R F, Hepworth M T. Effect of crystal orientation on the anodic polarization and passivity of zinc [J]. Corrosion, 1968, 24: 50
[35] Park H, Szpunar J A. The role of texture and morphology in optimizing the corrosion resistance of zinc-based electrogalvanized coatings [J]. Corros. Sci., 1998, 40: 525
[36] Weininger J L, Breiter M W. Effect of crystal structure on the anodic oxidation of Nickel [J]. J. Electrochem. Soc., 1963, 110: 484
[37] Gray J J, Ei Dasher B S, Orme C A. Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy 22 [J]. Surf. Sci., 2006, 600: 2488
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
No Suggested Reading articles found!