Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (2): 101-108    DOI: 10.11901/1005.3093.2019.484
ARTICLES Current Issue | Archive | Adv Search |
Fabrication and Mechanical Properties of Ti-Reinforced Cu40Zn Brass Alloy via Powder Metallurgy
MA Chen,ZHANG Xin,PAN Deng,ZHENG Feiyang,LI Shufeng()
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Cite this article: 

MA Chen,ZHANG Xin,PAN Deng,ZHENG Feiyang,LI Shufeng. Fabrication and Mechanical Properties of Ti-Reinforced Cu40Zn Brass Alloy via Powder Metallurgy. Chinese Journal of Materials Research, 2020, 34(2): 101-108.

Download:  HTML  PDF(8275KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High strength Ti-reinforced Cu40Zn brass alloy was prepared by powder metallurgy. The effect of Ti addition on the microstructure, interfacial structure, phase composition and mechanical properties of the brass was investigated. Results show that Ti exists in Cu40Zn matrix as sub-micron Cu2Ti4O particles and Ti nanoclusters, which can significantly improve the mechanical properties of Cu40Zn by means of second-phase strengthening, fine-grain strengthening and processing hardening. Cu40Zn-1.9Ti has good comprehensive performance: the yield strength, tensile strength, elongation at break and hardness are 375 MPa, 602 MPa, 17.7% and 163 HV respectively.

Key words:  metallic materials      powder metallurgy      brass alloy      titanium      mechanical properties      nano precipitates     
Received:  16 October 2019     
ZTFLH:  TG146.1  
Fund: National Natural Science Foundation of China(51571160);National Natural Science Foundation of China(51871180);Natural Science Basic Research Plan in Shaanxi Province(2015JM5233);Xi'an Science and Technology Project(201805037-YD15CG21(15));Xi'an University of Technology Doctoral Dissertation Innovation Fund(310-252071903)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.484     OR     https://www.cjmr.org/EN/Y2020/V34/I2/101

Fig.1  Diagram of the preparation process of Ti reinforced Cu40Zn specimens (unit: mm)
Fig.2  Morphologies of raw materials and corresponding elements distribution (a) raw Cu40Zn powders, (b) raw Ti powders, (c) Cu40Zn-0.7Ti powder mixtures, (d~f) elements distribution of Cu, Zn and Ti corresponding to Fig.2c
Fig.3  XRD patterns of Cu40Zn-xTi (a) powder mixtures; (b) as-extruded samples
Fig.4  Optical images of longitudinal cross-section of Cu40Zn brass with different Ti addition after hot extrusion (a) Cu40Zn, (b) Cu40Zn-0.3Ti, (c) Cu40Zn-1.1Ti, (d) Cu40Zn-1.9Ti
Fig.5  SEM micrographs of longitudinal and transversal cross-section of Cu40Zn brass with different Ti addition after hot extrusion (a, a') Cu40Zn; (b, b') Cu40Zn-0.3Ti; (c, c') Cu40Zn-1.1Ti; (d, d') Cu40Zn-1.9Ti
Fig.6  EDS mappings of Cu40Zn-0.7Ti longitudinal to extrusion direction (a) SEM image of Cu40Zn-0.7Ti after extrusion; (b~d) distribution of Ti, Cu and Zn elements corresponding to Fig.6a
Fig.7  TEM micrographs of Cu40Zn-1.9Ti (a, b) bright field image; (c) selected area electron diffraction pattern corresponding to diff.1 remarked in Fig.7b; (d, e) high resolution TEM images corresponding to area HR1 and HR2 in Fig.7b; (f) diffraction fringe corresponding to area A3 in Fig.7b
Fig.8  Stress-strain curves of Cu40Zn brass with different Ti additives
Materials

YS

/MPa

UTS

/MPa

Elongation

/%

Hardness

/HV0.2

Cu40Zn33551924.5132
Cu40Zn-0.3Ti33654923.0136
Cu40Zn-0.7Ti34356222.2143
Cu40Zn-1.1Ti34757321.0147
Cu40Zn-1.5Ti35258719.3154
Cu40Zn-1.9Ti37560217.7163
Table 1  Mechanical properties of Cu40Zn brass with different Ti additives
Fig.9  Relationship between the amount of titanium addition and the mechanical properties and hardness of titanium brass
Fig.10  Fracture micrographs of Cu40Zn-Ti with different Ti additions (a, a') Cu40Zn; (b, b') Cu40Zn-0.3Ti; (c, c') Cu40Zn-1.1Ti; (d, d') Cu40Zn-1.9Ti
[1] Liu P, Ren F Z, Jia S G. Copper Alloys and their Applications [M]. Beijing: Chemical Industry Press, 2007: 5
[1] (刘平, 任凤章, 贾淑果. 铜合金及其应用 [M]. 北京; 化学工业出版社, 2007: 5)
[2] Davis J R. ASM International-Alloying-Understanding the Basics [M]. The United States of America, Chagrin Falls, 2001: 455
[3] Liptakova T, Broncek J, Lovisek M, et al. Tribological and corrosion properties of Al-brass [J]. Mater. Today, 2017, 4: 5867
[4] Tian L, Russell A, Riedemann T, et al. A deformation-processed Al-matrix/Ca-nano?lamentary composite with low density, high strength, and high conductivity [J]. Mater. Sci. Eng., 2017, 690A: 348
[5] Davis J R. ASM Specialty Handbook (Copper and Copper Alloys) [M]. Materials Park, Ohio, USA: ASM International, 2008: 105
[6] Li S F, Imai H, Atsumi H, et al. Characteristics of high strength extruded BS40CrFeSn alloy prepared by spark plasma sintering and hot pressing [J]. J. Alloys Compd., 2010, 493: 128
[7] Wang H Y, Feng B Q, Song G, et al. Laser-arc hybrid welding of high-strength steel and aluminum alloy joints with brass filler [J]. Mater. Manufactur. Proc., 2017, 33: 735
[8] Mo Y D, Jiang Y B, Liu X H, et al. Effects of microstructure on the deformation behavior, mechanical Properties and residual stress of cold-rolled HAl77-2 aluminum brass tube [J]. J. Mater. Process. Technol., 2016, 235: 75
[9] Okamoto H, Schlesinger M E, Mueller E M. ASM Handbook-Alloy Phase Diagrams [M]. The United States of America, H. OKAMOTO, 2016: 3
[10] Kumar K C H, Ansara I, Wollants P, et al. Thermodynamic optimization of the Cu Ti system [J]. Zeitschrift für Metallkunde, 1996, 87: 666
[11] Li S F, Imai H, Atsumi H, et al. Phase transformation and precipitation hardening behavior of Cr and Fe in BS40CrFeSn alloy [J]. J. Mater. Sci., 2010, 45: 5669
[12] Zhang X, Liu X Y, Wallinder I O, et al. The protective role of hydrozincite during initial corrosion of a Cu40Zn alloy in chloride-containing laboratory atmosphere [J]. Corros. Sci., 2016, 103: 20
[13] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T228-2002 Metallic materials-Tensile testing at ambient temperature [S]. Beijing: China Standards Press, 2002
[13] ((中华人民共和国国家质量监督检验检疫总局. GB/T228-2002 金属材料 室温拉伸试验方法 [S]. 北京: 中国标准出版社, 2002)
[14] Yuan Q, Ge H H, Sha J Y, et al. Influence of Al2O3 nanoparticles on the corrosion behavior of brass in simulated cooling water [J]. J. Alloys Compd., 2018, 764: 512
[15] Li H, Xu W, Wang Z X, et al. Effects of re-ageing treatment on microstructure and tensile properties of solution treated and cold-rolled Al-Cu-Mg alloys [J]. Mater. Sci. Eng., 2016, 650A: 254
[16] Li S F, Imai H, Atsumi H, et al. Contribution of Ti addition to characteristics of extruded Cu40Zn brass alloy prepared by powder metallurgy [J]. Mater. Des., 2011, 32: 192
[17] Li S F, Imai H, Atsumi H, et al. The effects of Ti and Sn alloying elements on precipitation strengthened Cu40Zn brass using powder metallurgy and hot extrusion [J]. Mater. Sci. Eng., 2012, 535A: 22
[18] Li S F, Imai H, Kondoh K. Microstructure, phase transformation, precipitation behavior and mechanical properties of P/M Cu40Zn-1.0 wt% Ti brass alloy via spark plasma sintering and hot extrusion [J]. J. Mater. Sci. Technol., 2013, 29: 1018
[19] Liu W D, Qu H, Chen C, et al. Evolution of valence electron structure of GP Zone during precipitation in Al-Cu alloy [J]. Rare Met. Mater. Eng., 2010, 39: 598
[19] (刘伟东, 屈华, 陈超等. Al-Cu合金GP区形成过程的价电子结构演变 [J]. 稀有金属材料与工程, 2010, 39: 598)
[20] Liu C Y, Qu B, Ma Z Y, et al. Recrystallization, precipitation, and resultant mechanical properties of rolled Al-Zn alloy after aging [J]. Mater. Sci. Eng., 2016: 657A: 284
[21] Broek D. Prediction of fatigue crack growth [A]. Elementary Engineering Fracture Mechanics [M]. Dordrecht: Springer, 1982: 24
[22] Gao Y H, Yang C, Zhang J Y, et al. Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300℃ [J]. Mater. Res. Lett., 2018, 7: 18
[23] Hu G X. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiaotong University Press, 2010: 188
[23] (胡庚祥. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2010: 188)
[24] Kim J H, Jeun J H, Chun H J, et al. Effect of precipitates on mechanical properties of AA2195 [J]. J. Alloys Compd., 2016, 669: 187
[25] Li S F, Imai H, Kondoh K, et al. Precipitation strengthening of supersaturated alloying elements in cu40zn graphite brasses prepared by powder metallurgy [J]. Chin. J. Mater. Res., 2018, 32: 843
[25] (李树丰, 今井久志, 近藤胜义等. 过饱和固溶合金元素在粉末冶金石墨黄铜中的析出强化 [J]. 材料研究学报, 2018, 32: 843)
[26] Toulfatzis A I, Pantazopoulos G A, Paipetis A S. Fracture mechanics properties and failure mechanisms of environmental-friendly brass alloys under impact, cyclic and monotonic loading conditions [J]. Eng. Fail. Anal., 2018, 90: 497
[27] Zhang R, He X B, Chen Z, et al. Influence of Ti content on the microstructure and properties of graphite flake/Cu-Ti composites fabricated by vacuum hot pressing [J]. Vacuum, 2017, 141: 265
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!