|
|
Fabrication and Mechanical Properties of Ti-Reinforced Cu40Zn Brass Alloy via Powder Metallurgy |
MA Chen,ZHANG Xin,PAN Deng,ZHENG Feiyang,LI Shufeng( ) |
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China |
|
Cite this article:
MA Chen,ZHANG Xin,PAN Deng,ZHENG Feiyang,LI Shufeng. Fabrication and Mechanical Properties of Ti-Reinforced Cu40Zn Brass Alloy via Powder Metallurgy. Chinese Journal of Materials Research, 2020, 34(2): 101-108.
|
Abstract High strength Ti-reinforced Cu40Zn brass alloy was prepared by powder metallurgy. The effect of Ti addition on the microstructure, interfacial structure, phase composition and mechanical properties of the brass was investigated. Results show that Ti exists in Cu40Zn matrix as sub-micron Cu2Ti4O particles and Ti nanoclusters, which can significantly improve the mechanical properties of Cu40Zn by means of second-phase strengthening, fine-grain strengthening and processing hardening. Cu40Zn-1.9Ti has good comprehensive performance: the yield strength, tensile strength, elongation at break and hardness are 375 MPa, 602 MPa, 17.7% and 163 HV respectively.
|
Received: 16 October 2019
|
|
Fund: National Natural Science Foundation of China(51571160);National Natural Science Foundation of China(51871180);Natural Science Basic Research Plan in Shaanxi Province(2015JM5233);Xi'an Science and Technology Project(201805037-YD15CG21(15));Xi'an University of Technology Doctoral Dissertation Innovation Fund(310-252071903) |
[1] | Liu P, Ren F Z, Jia S G. Copper Alloys and their Applications [M]. Beijing: Chemical Industry Press, 2007: 5 | [1] | (刘平, 任凤章, 贾淑果. 铜合金及其应用 [M]. 北京; 化学工业出版社, 2007: 5) | [2] | Davis J R. ASM International-Alloying-Understanding the Basics [M]. The United States of America, Chagrin Falls, 2001: 455 | [3] | Liptakova T, Broncek J, Lovisek M, et al. Tribological and corrosion properties of Al-brass [J]. Mater. Today, 2017, 4: 5867 | [4] | Tian L, Russell A, Riedemann T, et al. A deformation-processed Al-matrix/Ca-nano?lamentary composite with low density, high strength, and high conductivity [J]. Mater. Sci. Eng., 2017, 690A: 348 | [5] | Davis J R. ASM Specialty Handbook (Copper and Copper Alloys) [M]. Materials Park, Ohio, USA: ASM International, 2008: 105 | [6] | Li S F, Imai H, Atsumi H, et al. Characteristics of high strength extruded BS40CrFeSn alloy prepared by spark plasma sintering and hot pressing [J]. J. Alloys Compd., 2010, 493: 128 | [7] | Wang H Y, Feng B Q, Song G, et al. Laser-arc hybrid welding of high-strength steel and aluminum alloy joints with brass filler [J]. Mater. Manufactur. Proc., 2017, 33: 735 | [8] | Mo Y D, Jiang Y B, Liu X H, et al. Effects of microstructure on the deformation behavior, mechanical Properties and residual stress of cold-rolled HAl77-2 aluminum brass tube [J]. J. Mater. Process. Technol., 2016, 235: 75 | [9] | Okamoto H, Schlesinger M E, Mueller E M. ASM Handbook-Alloy Phase Diagrams [M]. The United States of America, H. OKAMOTO, 2016: 3 | [10] | Kumar K C H, Ansara I, Wollants P, et al. Thermodynamic optimization of the Cu Ti system [J]. Zeitschrift für Metallkunde, 1996, 87: 666 | [11] | Li S F, Imai H, Atsumi H, et al. Phase transformation and precipitation hardening behavior of Cr and Fe in BS40CrFeSn alloy [J]. J. Mater. Sci., 2010, 45: 5669 | [12] | Zhang X, Liu X Y, Wallinder I O, et al. The protective role of hydrozincite during initial corrosion of a Cu40Zn alloy in chloride-containing laboratory atmosphere [J]. Corros. Sci., 2016, 103: 20 | [13] | General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T228-2002 Metallic materials-Tensile testing at ambient temperature [S]. Beijing: China Standards Press, 2002 | [13] | ((中华人民共和国国家质量监督检验检疫总局. GB/T228-2002 金属材料 室温拉伸试验方法 [S]. 北京: 中国标准出版社, 2002) | [14] | Yuan Q, Ge H H, Sha J Y, et al. Influence of Al2O3 nanoparticles on the corrosion behavior of brass in simulated cooling water [J]. J. Alloys Compd., 2018, 764: 512 | [15] | Li H, Xu W, Wang Z X, et al. Effects of re-ageing treatment on microstructure and tensile properties of solution treated and cold-rolled Al-Cu-Mg alloys [J]. Mater. Sci. Eng., 2016, 650A: 254 | [16] | Li S F, Imai H, Atsumi H, et al. Contribution of Ti addition to characteristics of extruded Cu40Zn brass alloy prepared by powder metallurgy [J]. Mater. Des., 2011, 32: 192 | [17] | Li S F, Imai H, Atsumi H, et al. The effects of Ti and Sn alloying elements on precipitation strengthened Cu40Zn brass using powder metallurgy and hot extrusion [J]. Mater. Sci. Eng., 2012, 535A: 22 | [18] | Li S F, Imai H, Kondoh K. Microstructure, phase transformation, precipitation behavior and mechanical properties of P/M Cu40Zn-1.0 wt% Ti brass alloy via spark plasma sintering and hot extrusion [J]. J. Mater. Sci. Technol., 2013, 29: 1018 | [19] | Liu W D, Qu H, Chen C, et al. Evolution of valence electron structure of GP Zone during precipitation in Al-Cu alloy [J]. Rare Met. Mater. Eng., 2010, 39: 598 | [19] | (刘伟东, 屈华, 陈超等. Al-Cu合金GP区形成过程的价电子结构演变 [J]. 稀有金属材料与工程, 2010, 39: 598) | [20] | Liu C Y, Qu B, Ma Z Y, et al. Recrystallization, precipitation, and resultant mechanical properties of rolled Al-Zn alloy after aging [J]. Mater. Sci. Eng., 2016: 657A: 284 | [21] | Broek D. Prediction of fatigue crack growth [A]. Elementary Engineering Fracture Mechanics [M]. Dordrecht: Springer, 1982: 24 | [22] | Gao Y H, Yang C, Zhang J Y, et al. Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300℃ [J]. Mater. Res. Lett., 2018, 7: 18 | [23] | Hu G X. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiaotong University Press, 2010: 188 | [23] | (胡庚祥. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2010: 188) | [24] | Kim J H, Jeun J H, Chun H J, et al. Effect of precipitates on mechanical properties of AA2195 [J]. J. Alloys Compd., 2016, 669: 187 | [25] | Li S F, Imai H, Kondoh K, et al. Precipitation strengthening of supersaturated alloying elements in cu40zn graphite brasses prepared by powder metallurgy [J]. Chin. J. Mater. Res., 2018, 32: 843 | [25] | (李树丰, 今井久志, 近藤胜义等. 过饱和固溶合金元素在粉末冶金石墨黄铜中的析出强化 [J]. 材料研究学报, 2018, 32: 843) | [26] | Toulfatzis A I, Pantazopoulos G A, Paipetis A S. Fracture mechanics properties and failure mechanisms of environmental-friendly brass alloys under impact, cyclic and monotonic loading conditions [J]. Eng. Fail. Anal., 2018, 90: 497 | [27] | Zhang R, He X B, Chen Z, et al. Influence of Ti content on the microstructure and properties of graphite flake/Cu-Ti composites fabricated by vacuum hot pressing [J]. Vacuum, 2017, 141: 265 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|